{"title":"Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke","authors":"Xiang Qu, Shuang Wu, Jinggui Gao, Zhenxiu Qin, Zhenhua Zhou, Jingli Liu","doi":"10.1049/syb2.12016","DOIUrl":null,"url":null,"abstract":"<p>Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"15 3","pages":"93-100"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675812/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.