TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention.

Qing Wang, Ning Liu, Yuan-Shu Ni, Jia-Mei Yang, Lin Ma, Xiao-Bing Lan, Jing Wu, Jian-Guo Niu, Jian-Qiang Yu
{"title":"TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention.","authors":"Qing Wang, Ning Liu, Yuan-Shu Ni, Jia-Mei Yang, Lin Ma, Xiao-Bing Lan, Jing Wu, Jian-Guo Niu, Jian-Qiang Yu","doi":"10.1080/19336950.2020.1870088","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca<sup>2+</sup> accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"136-154"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1870088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.

Abstract Image

Abstract Image

Abstract Image

缺血性中风中的 TRPM2:结构、分子机制和药物干预。
缺血性中风在全球致死率很高,而新的治疗方法却很有限。钙超载被认为是脑缺血的机制之一。瞬时受体电位美司他丁 2(TRPM2)是一种对活性氧(ROS)敏感的钙通道。脑缺血诱导的 TRPM2 激活会引发细胞内 Ca2+ 的异常积累和细胞死亡,进而造成不可逆的脑损伤。因此,TRPM2 已成为缺血性中风的新治疗靶点。本综述提供了有关 TRPM2 的表达、结构和功能的数据,并阐述了其在缺血性中风中的细胞和分子机制。此外,还概述了天然和合成的 TRPM2 抑制剂(包括特异性和非特异性)。TRPM2 的三维蛋白结构已经确定,我们推测分子模拟技术对于开发阻断 TRPM2 通道的新药至关重要。这些关于 TRPM2 的见解可能是找到治疗缺血性中风的有效治疗方法的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信