DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte.

Q1 Biochemistry, Genetics and Molecular Biology
Stem cell investigation Pub Date : 2020-12-15 eCollection Date: 2020-01-01 DOI:10.21037/sci-2020-007
Mona Saheli, Vahid Pirhajati Mahabadi, Seyed Alireza Mesbah-Namin, Alexander Seifalian, Zahra Bagheri-Hosseinabadi
{"title":"DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte.","authors":"Mona Saheli,&nbsp;Vahid Pirhajati Mahabadi,&nbsp;Seyed Alireza Mesbah-Namin,&nbsp;Alexander Seifalian,&nbsp;Zahra Bagheri-Hosseinabadi","doi":"10.21037/sci-2020-007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The adult human heart muscle cells, cardiomyocytes are not capable of regenerate after injury. Stem cells are a powerful means for future regenerative medicine because of their capacity for self-renewal and multipotency. Several studies have reported the cardiogenic potential in human adipose tissue-derived stem cells (ADSCs) differentiation, but there is still no efficient protocol for the induction of cardiac differentiation by 5-azacytidine (5-Aza). The present study involves characterization and mainly, the ultrastructure of ADSCs derived cardiomyocyte-like cells.</p><p><strong>Methods: </strong>The cultured ADSCs were treated with 50 µM 5-Aza for 24 hours, followed by a 10-week extension. At different time points, cardiomyocyte-like cells were assessed by qRT-PCR and were evaluated by transmission electron microscopy at 10<sup>th</sup> week.</p><p><strong>Results: </strong>The expression of cardiac-specific markers entailing cardiac troponin I (cTnI), connexin 43, myosin light chain-2v (Mlc-2v), increased over 10 weeks and the highest expression was at 10<sup>th</sup> week. The expression of the β-myosin heavy chain (β-MHC) increased significantly over 5 weeks and then decreased. At the ultrastructural level myofibrils, transverse tubules (T-tubules), sarcoplasmic reticular membrane, and intercalated discs were present.</p><p><strong>Conclusions: </strong>These data suggest that treatment with 5-Aza in high dose could promote differentiation of ADSCs into cardiomyocyte-like cells. These differentiated cells could be used for regeneration of damaged cardiomyocytes with the 3D scaffold for delivery of the cells.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791156/pdf/sci-07-2020-007.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2020-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

Abstract

Background: The adult human heart muscle cells, cardiomyocytes are not capable of regenerate after injury. Stem cells are a powerful means for future regenerative medicine because of their capacity for self-renewal and multipotency. Several studies have reported the cardiogenic potential in human adipose tissue-derived stem cells (ADSCs) differentiation, but there is still no efficient protocol for the induction of cardiac differentiation by 5-azacytidine (5-Aza). The present study involves characterization and mainly, the ultrastructure of ADSCs derived cardiomyocyte-like cells.

Methods: The cultured ADSCs were treated with 50 µM 5-Aza for 24 hours, followed by a 10-week extension. At different time points, cardiomyocyte-like cells were assessed by qRT-PCR and were evaluated by transmission electron microscopy at 10th week.

Results: The expression of cardiac-specific markers entailing cardiac troponin I (cTnI), connexin 43, myosin light chain-2v (Mlc-2v), increased over 10 weeks and the highest expression was at 10th week. The expression of the β-myosin heavy chain (β-MHC) increased significantly over 5 weeks and then decreased. At the ultrastructural level myofibrils, transverse tubules (T-tubules), sarcoplasmic reticular membrane, and intercalated discs were present.

Conclusions: These data suggest that treatment with 5-Aza in high dose could promote differentiation of ADSCs into cardiomyocyte-like cells. These differentiated cells could be used for regeneration of damaged cardiomyocytes with the 3D scaffold for delivery of the cells.

DNA甲基转移酶抑制剂5-氮杂胞苷大剂量促进心肌细胞超微结构成熟。
背景:成人心肌细胞损伤后心肌细胞不具有再生能力。干细胞具有自我更新和多能性,是未来再生医学的有力手段。一些研究报道了人脂肪组织源性干细胞(ADSCs)分化的致心潜能,但5-氮杂胞苷(5-Aza)诱导心脏分化的有效方案仍然没有。本研究主要涉及ADSCs衍生的心肌细胞样细胞的表征和超微结构。方法:将培养的ADSCs用50µM 5-Aza处理24小时,然后延长10周。在不同的时间点,采用qRT-PCR评估心肌细胞样细胞,并在第10周采用透射电镜评估。结果:心肌特异性标志物心肌肌钙蛋白I (cTnI)、连接蛋白43 (connexin 43)、肌球蛋白轻链2v (Mlc-2v)的表达在10周内升高,在第10周表达最高。β-肌球蛋白重链(β-MHC)的表达在5周内先升高后降低。超微结构上可见肌原纤维、横小管(t小管)、肌浆网状膜和间插椎间盘。结论:大剂量5-Aza可促进ADSCs向心肌细胞样细胞分化。这些分化的细胞可用于损伤心肌细胞的再生,并使用3D支架进行细胞递送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem cell investigation
Stem cell investigation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
5.80
自引率
0.00%
发文量
9
期刊介绍: The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信