Mona Saheli, Vahid Pirhajati Mahabadi, Seyed Alireza Mesbah-Namin, Alexander Seifalian, Zahra Bagheri-Hosseinabadi
{"title":"DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte.","authors":"Mona Saheli, Vahid Pirhajati Mahabadi, Seyed Alireza Mesbah-Namin, Alexander Seifalian, Zahra Bagheri-Hosseinabadi","doi":"10.21037/sci-2020-007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The adult human heart muscle cells, cardiomyocytes are not capable of regenerate after injury. Stem cells are a powerful means for future regenerative medicine because of their capacity for self-renewal and multipotency. Several studies have reported the cardiogenic potential in human adipose tissue-derived stem cells (ADSCs) differentiation, but there is still no efficient protocol for the induction of cardiac differentiation by 5-azacytidine (5-Aza). The present study involves characterization and mainly, the ultrastructure of ADSCs derived cardiomyocyte-like cells.</p><p><strong>Methods: </strong>The cultured ADSCs were treated with 50 µM 5-Aza for 24 hours, followed by a 10-week extension. At different time points, cardiomyocyte-like cells were assessed by qRT-PCR and were evaluated by transmission electron microscopy at 10<sup>th</sup> week.</p><p><strong>Results: </strong>The expression of cardiac-specific markers entailing cardiac troponin I (cTnI), connexin 43, myosin light chain-2v (Mlc-2v), increased over 10 weeks and the highest expression was at 10<sup>th</sup> week. The expression of the β-myosin heavy chain (β-MHC) increased significantly over 5 weeks and then decreased. At the ultrastructural level myofibrils, transverse tubules (T-tubules), sarcoplasmic reticular membrane, and intercalated discs were present.</p><p><strong>Conclusions: </strong>These data suggest that treatment with 5-Aza in high dose could promote differentiation of ADSCs into cardiomyocyte-like cells. These differentiated cells could be used for regeneration of damaged cardiomyocytes with the 3D scaffold for delivery of the cells.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791156/pdf/sci-07-2020-007.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2020-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7
Abstract
Background: The adult human heart muscle cells, cardiomyocytes are not capable of regenerate after injury. Stem cells are a powerful means for future regenerative medicine because of their capacity for self-renewal and multipotency. Several studies have reported the cardiogenic potential in human adipose tissue-derived stem cells (ADSCs) differentiation, but there is still no efficient protocol for the induction of cardiac differentiation by 5-azacytidine (5-Aza). The present study involves characterization and mainly, the ultrastructure of ADSCs derived cardiomyocyte-like cells.
Methods: The cultured ADSCs were treated with 50 µM 5-Aza for 24 hours, followed by a 10-week extension. At different time points, cardiomyocyte-like cells were assessed by qRT-PCR and were evaluated by transmission electron microscopy at 10th week.
Results: The expression of cardiac-specific markers entailing cardiac troponin I (cTnI), connexin 43, myosin light chain-2v (Mlc-2v), increased over 10 weeks and the highest expression was at 10th week. The expression of the β-myosin heavy chain (β-MHC) increased significantly over 5 weeks and then decreased. At the ultrastructural level myofibrils, transverse tubules (T-tubules), sarcoplasmic reticular membrane, and intercalated discs were present.
Conclusions: These data suggest that treatment with 5-Aza in high dose could promote differentiation of ADSCs into cardiomyocyte-like cells. These differentiated cells could be used for regeneration of damaged cardiomyocytes with the 3D scaffold for delivery of the cells.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.