Dilated-DenseNet For Macromolecule Classification In Cryo-electron Tomography.

Shan Gao, Renmin Han, Xiangrui Zeng, Xuefeng Cui, Zhiyong Liu, Min Xu, Fa Zhang
{"title":"Dilated-DenseNet For Macromolecule Classification In Cryo-electron Tomography.","authors":"Shan Gao,&nbsp;Renmin Han,&nbsp;Xiangrui Zeng,&nbsp;Xuefeng Cui,&nbsp;Zhiyong Liu,&nbsp;Min Xu,&nbsp;Fa Zhang","doi":"10.1007/978-3-030-57821-3_8","DOIUrl":null,"url":null,"abstract":"<p><p>Cryo-electron tomography (cryo-ET) combined with subtomogram averaging (STA) is a unique technique in revealing macromolecule structures in their near-native state. However, due to the macromolecular structural heterogeneity, low signal-to-noise-ratio (SNR) and anisotropic resolution in the tomogram, macromolecule classification, a critical step of STA, remains a great challenge. In this paper, we propose a novel convolution neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification in STA. The proposed 3D-Dilated-DenseNet is challenged by the synthetic dataset in the SHREC contest and the experimental dataset, and compared with the SHREC-CNN (the state-of-the-art CNN model in the SHREC contest) and the baseline 3D-DenseNet. The results showed that 3D-Dilated-DenseNet significantly outperformed 3D-DenseNet but 3D-DenseNet is well above SHREC-CNN. Moreover, in order to further demonstrate the validity of dilated convolution in the classification task, we visualized the feature map of 3D-Dilated-DenseNet and 3D-DenseNet. Dilated convolution extracts a much more representative feature map.</p>","PeriodicalId":93167,"journal":{"name":"Bioinformatics research and applications : ... international symposium, ISBRA ... proceedings. ISBRA (Conference)","volume":"12304 ","pages":"82-94"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046028/pdf/nihms-1675391.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics research and applications : ... international symposium, ISBRA ... proceedings. ISBRA (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-57821-3_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cryo-electron tomography (cryo-ET) combined with subtomogram averaging (STA) is a unique technique in revealing macromolecule structures in their near-native state. However, due to the macromolecular structural heterogeneity, low signal-to-noise-ratio (SNR) and anisotropic resolution in the tomogram, macromolecule classification, a critical step of STA, remains a great challenge. In this paper, we propose a novel convolution neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification in STA. The proposed 3D-Dilated-DenseNet is challenged by the synthetic dataset in the SHREC contest and the experimental dataset, and compared with the SHREC-CNN (the state-of-the-art CNN model in the SHREC contest) and the baseline 3D-DenseNet. The results showed that 3D-Dilated-DenseNet significantly outperformed 3D-DenseNet but 3D-DenseNet is well above SHREC-CNN. Moreover, in order to further demonstrate the validity of dilated convolution in the classification task, we visualized the feature map of 3D-Dilated-DenseNet and 3D-DenseNet. Dilated convolution extracts a much more representative feature map.

低温电子断层扫描中用于大分子分类的膨胀致密网。
低温电子断层扫描(cryo-ET)结合亚层析成像平均(STA)是一种独特的技术,可以揭示大分子在接近天然状态下的结构。然而,由于层析图中大分子结构的非均质性、低信噪比和各向异性分辨率,大分子分类作为STA的关键步骤仍然是一个巨大的挑战。在本文中,我们提出了一种新的卷积神经网络,命名为3d - expanded - densenet,以提高STA中的大分子分类性能。利用SHREC竞赛中的合成数据集和实验数据集对提出的3d - expanded - densenet进行了挑战,并与SHREC竞赛中最先进的CNN模型shrecc -CNN和基线3D-DenseNet进行了比较。结果表明,3d - expanded - densenet的性能明显优于3D-DenseNet,但3D-DenseNet的性能远高于shrecc - cnn。此外,为了进一步证明扩展卷积在分类任务中的有效性,我们将3D-Dilated-DenseNet和3D-DenseNet的特征映射可视化。扩展卷积提取一个更有代表性的特征映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信