Petri Net modelling approach for analysing the behaviour of Wnt/ -catenin and Wnt/ Ca2+ signalling pathways in arrhythmogenic right ventricular cardiomyopathy
{"title":"Petri Net modelling approach for analysing the behaviour of Wnt/ -catenin and Wnt/ Ca2+ signalling pathways in arrhythmogenic right ventricular cardiomyopathy","authors":"Nazia Azim, Jamil Ahmad, Nadeem Iqbal, Amnah Siddiqa, Abdul Majid, Javaria Ashraf, Fazal Jalil","doi":"10.1049/iet-syb.2020.0038","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure and sudden death. The hallmark pathological findings are progressive myocyte loss and fibro fatty replacement, with a predilection for the right ventricle. This study focuses on the adipose tissue formation in cardiomyocyte by considering the signal transduction pathways including <i>Wnt/</i> <i>-catenin</i> and <i>Wnt/Ca<sup>2+</sup></i> regulation system. These pathways are modelled and analysed using stochastic petri nets (SPN) in order to increase our comprehension of ARVC and in turn its treatment regimen. The <i>Wnt/</i> <i>-catenin</i> model predicts that the dysregulation or absence of <i>Wnt</i> signalling, inhibition of dishevelled and elevation of glycogen synthase kinase 3 along with casein kinase I are key cytotoxic events resulting in apoptosis. Moreover, the <i>Wnt/Ca<sup>2+</sup></i> SPN model demonstrates that the <i>Bcl2</i> gene inhibited by <i>c-Jun N-terminal kinase</i> protein in the event of endoplasmic reticulum stress due to action potential and increased amount of intracellular Ca<sup>2<i>+</i></sup> which recovers the Ca<sup>2<i>+</i></sup> homeostasis by phospholipase C, this event positively regulates the <i>Bcl2</i> to suppress the mitochondrial apoptosis which causes ARVC.</p>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"14 6","pages":"350-367"},"PeriodicalIF":1.9000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687399/pdf/SYB2-14-350.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that may result in arrhythmia, heart failure and sudden death. The hallmark pathological findings are progressive myocyte loss and fibro fatty replacement, with a predilection for the right ventricle. This study focuses on the adipose tissue formation in cardiomyocyte by considering the signal transduction pathways including Wnt/-catenin and Wnt/Ca2+ regulation system. These pathways are modelled and analysed using stochastic petri nets (SPN) in order to increase our comprehension of ARVC and in turn its treatment regimen. The Wnt/-catenin model predicts that the dysregulation or absence of Wnt signalling, inhibition of dishevelled and elevation of glycogen synthase kinase 3 along with casein kinase I are key cytotoxic events resulting in apoptosis. Moreover, the Wnt/Ca2+ SPN model demonstrates that the Bcl2 gene inhibited by c-Jun N-terminal kinase protein in the event of endoplasmic reticulum stress due to action potential and increased amount of intracellular Ca2+ which recovers the Ca2+ homeostasis by phospholipase C, this event positively regulates the Bcl2 to suppress the mitochondrial apoptosis which causes ARVC.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.