Elucidation and refinement of synthetic receptor mechanisms.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2020-09-30 eCollection Date: 2020-01-01 DOI:10.1093/synbio/ysaa017
Hailey I Edelstein, Patrick S Donahue, Joseph J Muldoon, Anthony K Kang, Taylor B Dolberg, Lauren M Battaglia, Everett R Allchin, Mihe Hong, Joshua N Leonard
{"title":"Elucidation and refinement of synthetic receptor mechanisms.","authors":"Hailey I Edelstein, Patrick S Donahue, Joseph J Muldoon, Anthony K Kang, Taylor B Dolberg, Lauren M Battaglia, Everett R Allchin, Mihe Hong, Joshua N Leonard","doi":"10.1093/synbio/ysaa017","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood. In general, it would be useful to understand how receptor design choices influence performance characteristics. In this study, we examined the modular extracellular sensor architecture (MESA) and systematically evaluated previously unexamined design choices, yielding substantially improved receptors. A key finding that might extend to other receptor systems is that the choice of transmembrane domain (TMD) is important for generating high-performing receptors. To provide mechanistic insights, we adopted and employed a Förster resonance energy transfer-based assay to elucidate how TMDs affect receptor complex formation and connected these observations to functional performance. To build further insight into these phenomena, we developed a library of new MESA receptors that sense an expanded set of ligands. Based upon these explorations, we conclude that TMDs affect signaling primarily by modulating intracellular domain geometry. Finally, to guide the design of future receptors, we propose general principles for linking design choices to biophysical mechanisms and performance characteristics.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa017"},"PeriodicalIF":2.6000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaa017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood. In general, it would be useful to understand how receptor design choices influence performance characteristics. In this study, we examined the modular extracellular sensor architecture (MESA) and systematically evaluated previously unexamined design choices, yielding substantially improved receptors. A key finding that might extend to other receptor systems is that the choice of transmembrane domain (TMD) is important for generating high-performing receptors. To provide mechanistic insights, we adopted and employed a Förster resonance energy transfer-based assay to elucidate how TMDs affect receptor complex formation and connected these observations to functional performance. To build further insight into these phenomena, we developed a library of new MESA receptors that sense an expanded set of ligands. Based upon these explorations, we conclude that TMDs affect signaling primarily by modulating intracellular domain geometry. Finally, to guide the design of future receptors, we propose general principles for linking design choices to biophysical mechanisms and performance characteristics.

Abstract Image

Abstract Image

Abstract Image

阐明和完善合成受体机制。
合成受体是设计基于哺乳动物细胞的装置的强大工具。这些生物传感器使细胞疗法能够执行复杂的任务,如根据生理线索调节治疗基因的表达。虽然目前存在多种合成受体系统,但人们对受体性能的许多方面还知之甚少。一般来说,了解受体设计选择如何影响性能特征是非常有用的。在这项研究中,我们研究了模块化细胞外传感器结构(MESA),并系统地评估了以前未曾研究过的设计选择,从而大大改进了受体。一个可推广到其他受体系统的关键发现是,跨膜结构域(TMD)的选择对于产生高性能受体非常重要。为了提供机理方面的见解,我们采用了一种基于佛斯特共振能量转移的检测方法来阐明 TMD 如何影响受体复合物的形成,并将这些观察结果与功能表现联系起来。为了进一步深入了解这些现象,我们开发了一个新的 MESA 受体库,可以感知更多的配体。基于这些探索,我们得出结论:TMD 主要通过调节细胞内结构域的几何形状来影响信号传导。最后,为了指导未来受体的设计,我们提出了将设计选择与生物物理机制和性能特征联系起来的一般原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信