{"title":"Novel Approaches of CRISPR-Cas Technology in Airway Diseases.","authors":"Srinivasan Chinnapaiyan, R K Dutta, H J Unwalla","doi":"10.1615/CritRevBiomedEng.2020034594","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered regularly interspaced palindromic repeats (CRISPR) technique plays a vital role in preclinical modelling of many respiratory diseases. Diseases such as chronic obstructive pulmonary disease (COPD), asthma, acute tracheal bronchitis, pneumonia, tuberculosis, lung cancer, and influenza infection continue to significantly impact human health. CRISPR associated (Cas) proteins, isolated from the immune system of prokaryotes, are one component of a very useful technique to manipulate gene sequences or editing and gene expression with significant implications for respiratory research in the field of molecular biology. CRISPR technology is a promising tool that is easily adaptable for specific editing of DNA sequences of interest with a goal towards modifying or eliminating gene function. Among its many potential applications, CRISPR can be applied to correcting genetic defects as well as for therapeutic approaches for treatment. This review elucidates recent advances in CRISPR-Cas technology in airway diseases.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"48 3","pages":"169-176"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2020034594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) technique plays a vital role in preclinical modelling of many respiratory diseases. Diseases such as chronic obstructive pulmonary disease (COPD), asthma, acute tracheal bronchitis, pneumonia, tuberculosis, lung cancer, and influenza infection continue to significantly impact human health. CRISPR associated (Cas) proteins, isolated from the immune system of prokaryotes, are one component of a very useful technique to manipulate gene sequences or editing and gene expression with significant implications for respiratory research in the field of molecular biology. CRISPR technology is a promising tool that is easily adaptable for specific editing of DNA sequences of interest with a goal towards modifying or eliminating gene function. Among its many potential applications, CRISPR can be applied to correcting genetic defects as well as for therapeutic approaches for treatment. This review elucidates recent advances in CRISPR-Cas technology in airway diseases.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.