Proteochemometrics – recent developments in bioactivity and selectivity modeling

Q1 Pharmacology, Toxicology and Pharmaceutics
Brandon J. Bongers, Adriaan. P. IJzerman, Gerard J.P. Van Westen
{"title":"Proteochemometrics – recent developments in bioactivity and selectivity modeling","authors":"Brandon J. Bongers,&nbsp;Adriaan. P. IJzerman,&nbsp;Gerard J.P. Van Westen","doi":"10.1016/j.ddtec.2020.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand–target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 89-98"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.08.003","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 24

Abstract

Proteochemometrics is a machine learning based modeling approach relying on a combination of ligand and protein descriptors. With ongoing developments in machine learning and increases in public data the technique is more frequently applied in early drug discovery, typically in ligand–target binding prediction. Common applications include improvements to single target quantitative structure-activity relationship models, protein selectivity and promiscuity modeling, and large-scale deep learning approaches. The increase in predictive power using proteochemometrics is observed in multi-target bioactivity modeling, opening the door to more extensive studies covering whole protein families. On top of that, with deep learning fueling more complex and larger scale models, proteochemometrics allows faster and higher quality computational models supporting the design, make, test cycle.

蛋白质化学计量学 - 生物活性和选择性建模的最新进展
蛋白质化学计量学是一种基于机器学习的建模方法,依赖于配体和蛋白质描述符的组合。随着机器学习的不断发展和公共数据的增加,该技术更频繁地应用于早期药物发现,通常用于配体-靶标结合预测。常见的应用包括改进单目标定量结构-活性关系模型,蛋白质选择性和混杂性建模,以及大规模深度学习方法。在多靶点生物活性建模中观察到使用蛋白质化学计量学的预测能力的增加,为覆盖整个蛋白质家族的更广泛的研究打开了大门。最重要的是,随着深度学习为更复杂、更大规模的模型提供支持,蛋白质化学计量学允许更快、更高质量的计算模型支持设计、制造、测试周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信