The subterranean catfish Phreatobius cisternarum provides insights into visual adaptations to the phreatic environment.

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Louise N Perez, Bertha R Mariluz, Jamily Lorena, Amy Liu, Marcos P Sousa, Rodrigo A P Martins, John S Taylor, Patricia N Schneider
{"title":"The subterranean catfish <i>Phreatobius cisternarum</i> provides insights into visual adaptations to the phreatic environment.","authors":"Louise N Perez,&nbsp;Bertha R Mariluz,&nbsp;Jamily Lorena,&nbsp;Amy Liu,&nbsp;Marcos P Sousa,&nbsp;Rodrigo A P Martins,&nbsp;John S Taylor,&nbsp;Patricia N Schneider","doi":"10.1387/ijdb.200335pn","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrate eyes share the same general organization, though species have evolved morphological and functional adaptations to diverse environments. Cave-adapted animals are characterized by a variety of features including eye reduction, loss of body pigmentation, and enhanced non-visual sensory systems. Species that live in perpetual darkness have also evolved sensory mechanisms that are independent of light stimuli. The subterranean catfish <i>Phreatobius cisternarum</i> lives in the Amazonian phreatic zone and displays a diversity of morphological features that are similar to those observed in cavefish and appear to be adaptations to life in the dark. Here we combine histological and transcriptome analyses to characterize sensory adaptations of <i>P. cisternarum</i> to the subterranean environment. Histological analysis showed that the vestigial eyes of <i>P. cisternarum</i> contain a rudimentary lens. Transcriptome analysis revealed a repertoire of eleven visual and non-visual opsins and the expression of 36 genes involved in lens development and maintenance. In contrast to other cavefish species, such as <i>Astyanax mexicanus</i>, <i>Phreatichthys andruzzii, Sinocyclocheilus anophthalmus</i> and <i>Sinocyclocheilus microphthalmus</i>, DASPEI neuromast staining patterns did not show an increase in the number of sensory hair cells. Our work reveals unique adaptations in the visual system of <i>P. cisternarum</i> to underground habitats and helps to shed light into troglomorphic attributes of subterranean animals.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.200335pn","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vertebrate eyes share the same general organization, though species have evolved morphological and functional adaptations to diverse environments. Cave-adapted animals are characterized by a variety of features including eye reduction, loss of body pigmentation, and enhanced non-visual sensory systems. Species that live in perpetual darkness have also evolved sensory mechanisms that are independent of light stimuli. The subterranean catfish Phreatobius cisternarum lives in the Amazonian phreatic zone and displays a diversity of morphological features that are similar to those observed in cavefish and appear to be adaptations to life in the dark. Here we combine histological and transcriptome analyses to characterize sensory adaptations of P. cisternarum to the subterranean environment. Histological analysis showed that the vestigial eyes of P. cisternarum contain a rudimentary lens. Transcriptome analysis revealed a repertoire of eleven visual and non-visual opsins and the expression of 36 genes involved in lens development and maintenance. In contrast to other cavefish species, such as Astyanax mexicanus, Phreatichthys andruzzii, Sinocyclocheilus anophthalmus and Sinocyclocheilus microphthalmus, DASPEI neuromast staining patterns did not show an increase in the number of sensory hair cells. Our work reveals unique adaptations in the visual system of P. cisternarum to underground habitats and helps to shed light into troglomorphic attributes of subterranean animals.

地下鲶鱼Phreatobius cisternarum提供了对潜水环境的视觉适应的见解。
脊椎动物的眼睛具有相同的总体组织,尽管物种已经进化出适应不同环境的形态和功能。适应洞穴的动物具有多种特征,包括眼睛缩小、身体色素丧失和非视觉感觉系统增强。生活在永久黑暗中的物种也进化出了独立于光刺激的感觉机制。地下鲶鱼Phreatobius cisternarum生活在亚马逊潜水带,表现出与洞穴鱼相似的多种形态特征,似乎适应了黑暗的生活。在这里,我们结合组织学和转录组分析来表征P. cisternarum对地下环境的感觉适应。组织学分析表明,残眼中含有一个初级晶状体。转录组分析揭示了11种视觉和非视觉视蛋白以及36种参与晶状体发育和维持的基因的表达。与Astyanax mexicanus、Phreatichthys andruzzii、Sinocyclocheilus anophthalmus和Sinocyclocheilus microphthalmus等其他洞穴鱼类相比,DASPEI神经肥大染色模式未显示感觉毛细胞数量增加。我们的研究揭示了P. cisternarum的视觉系统对地下栖息地的独特适应,并有助于揭示地下动物的troglomerorphic属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
审稿时长
2 months
期刊介绍: The International Journal of Developmental Biology (ISSN: 0214- 6282) is an independent, not for profit scholarly journal, published by scientists, for scientists. The journal publishes papers which throw light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties and cancer. Technical, historical or theoretical approaches also fall within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid publication; free unlimited color reproduction; no page charges; free publication of online supplementary material; free publication of audio files (MP3 type); one-to-one personalized attention at all stages during the editorial process. An easy online submission facility and an open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the journal offers free online subscriptions to academic institutions in developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信