Within- and cross-species predictions of plant specialized metabolism genes using transfer learning.

IF 2.6 Q1 AGRONOMY
in silico Plants Pub Date : 2020-01-01 Epub Date: 2020-07-30 DOI:10.1093/insilicoplants/diaa005
Bethany M Moore, Peipei Wang, Pengxiang Fan, Aaron Lee, Bryan Leong, Yann-Ru Lou, Craig A Schenck, Koichi Sugimoto, Robert Last, Melissa D Lehti-Shiu, Cornelius S Barry, Shin-Han Shiu
{"title":"Within- and cross-species predictions of plant specialized metabolism genes using transfer learning.","authors":"Bethany M Moore,&nbsp;Peipei Wang,&nbsp;Pengxiang Fan,&nbsp;Aaron Lee,&nbsp;Bryan Leong,&nbsp;Yann-Ru Lou,&nbsp;Craig A Schenck,&nbsp;Koichi Sugimoto,&nbsp;Robert Last,&nbsp;Melissa D Lehti-Shiu,&nbsp;Cornelius S Barry,&nbsp;Shin-Han Shiu","doi":"10.1093/insilicoplants/diaa005","DOIUrl":null,"url":null,"abstract":"<p><p>Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like <i>Arabidopsis thaliana</i> have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from <i>A. thaliana</i> is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (<i>F</i>-measure = 0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with <i>A. thaliana</i> data were used to filter out genes where the <i>A. thaliana-</i>based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (<i>F</i>-measure = 0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.</p>","PeriodicalId":36138,"journal":{"name":"in silico Plants","volume":"2 1","pages":"diaa005"},"PeriodicalIF":2.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/insilicoplants/diaa005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"in silico Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diaa005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like Arabidopsis thaliana have extensive, experimentally derived annotations, whereas many non-model species do not. Here we employed a machine learning strategy, transfer learning, where knowledge from A. thaliana is transferred to predict gene functions in cultivated tomato with fewer experimentally annotated genes. The first tomato SM/GM prediction model using only tomato data performs well (F-measure = 0.74, compared with 0.5 for random and 1.0 for perfect predictions), but from manually curating 88 SM/GM genes, we found many mis-predicted entries were likely mis-annotated. When the SM/GM prediction models built with A. thaliana data were used to filter out genes where the A. thaliana-based model predictions disagreed with tomato annotations, the new tomato model trained with filtered data improved significantly (F-measure = 0.92). Our study demonstrates that SM/GM genes can be better predicted by leveraging cross-species information. Additionally, our findings provide an example for transfer learning in genomics where knowledge can be transferred from an information-rich species to an information-poor one.

Abstract Image

Abstract Image

Abstract Image

利用迁移学习对植物特化代谢基因的种内和跨种预测。
植物特化代谢物介导植物与环境之间的相互作用,具有重要的农学/药学价值。由于代谢产物数量众多,而且很难从一般代谢(GM)基因中区分出特殊代谢(SM)基因,因此大多数参与特殊代谢(SM)的基因都是未知的。拟南芥等植物模型具有广泛的实验推导的注释,而许多非模式物种则没有。在这里,我们采用了一种机器学习策略,即迁移学习,将拟南芥的知识转移到具有较少实验注释基因的栽培番茄中来预测基因功能。仅使用番茄数据的第一个番茄SM/GM预测模型表现良好(F-measure = 0.74,而随机预测为0.5,完美预测为1.0),但从手动管理的88个SM/GM基因中,我们发现许多错误预测的条目可能是错误注释。利用拟沙拟兰数据建立的SM/GM预测模型,过滤掉拟沙拟兰模型预测与番茄注释不一致的基因,过滤后的新番茄模型得到显著改善(F-measure = 0.92)。我们的研究表明,利用跨物种信息可以更好地预测SM/GM基因。此外,我们的发现为基因组学中的迁移学习提供了一个例子,其中知识可以从信息丰富的物种转移到信息贫乏的物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
in silico Plants
in silico Plants Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
4.70
自引率
9.70%
发文量
21
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信