Analysis of fast structured dictionary learning.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Saiprasad Ravishankar, Anna Ma, Deanna Needell
{"title":"Analysis of fast structured dictionary learning.","authors":"Saiprasad Ravishankar, Anna Ma, Deanna Needell","doi":"10.1093/imaiai/iaz028","DOIUrl":null,"url":null,"abstract":"<p><p>Sparsity-based models and techniques have been exploited in many signal processing and imaging applications. Data-driven methods based on dictionary and sparsifying transform learning enable learning rich image features from data and can outperform analytical models. In particular, alternating optimization algorithms have been popular for learning such models. In this work, we focus on alternating minimization for a specific structured unitary sparsifying operator learning problem and provide a convergence analysis. While the algorithm converges to the critical points of the problem generally, our analysis establishes under mild assumptions, the local linear convergence of the algorithm to the underlying sparsifying model of the data. Analysis and numerical simulations show that our assumptions hold for standard probabilistic data models. In practice, the algorithm is robust to initialization.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"9 4","pages":"785-811"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737167/pdf/iaz028.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaz028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Sparsity-based models and techniques have been exploited in many signal processing and imaging applications. Data-driven methods based on dictionary and sparsifying transform learning enable learning rich image features from data and can outperform analytical models. In particular, alternating optimization algorithms have been popular for learning such models. In this work, we focus on alternating minimization for a specific structured unitary sparsifying operator learning problem and provide a convergence analysis. While the algorithm converges to the critical points of the problem generally, our analysis establishes under mild assumptions, the local linear convergence of the algorithm to the underlying sparsifying model of the data. Analysis and numerical simulations show that our assumptions hold for standard probabilistic data models. In practice, the algorithm is robust to initialization.

快速结构化词典学习分析
基于稀疏性的模型和技术已在许多信号处理和成像应用中得到开发。基于字典和稀疏性变换学习的数据驱动方法可以从数据中学习丰富的图像特征,其效果优于分析模型。其中,交替优化算法一直是学习此类模型的常用方法。在这项工作中,我们将重点放在交替最小化上,以解决特定的结构化单元稀疏化算子学习问题,并提供收敛性分析。虽然算法一般会收敛到问题的临界点,但我们的分析在温和的假设条件下,确定了算法对数据基础稀疏化模型的局部线性收敛。分析和数值模拟表明,我们的假设对于标准概率数据模型是成立的。在实践中,该算法对初始化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信