{"title":"On a Shape-Invariant Hazard Regression Model with application to an HIV Prevention Study of Mother-to-Child Transmission.","authors":"Cheng Zheng, Ying Qing Chen","doi":"10.1007/s12561-019-09260-4","DOIUrl":null,"url":null,"abstract":"<p><p>In survival analysis, Cox model is widely used for most clinical trial data. Alternatives include the additive hazard model, the accelerated failure time (AFT) model and a more general transformation model. All these models assume that the effects for all covariates are on the same scale. However, it is possible that for different covariates, the effects are on different scales. In this paper, we propose a shape-invariant hazard regression model that allows us to estimate the multiplicative treatment effect with adjustment of covariates that have non-multiplicative effects. We propose moment-based inference procedures for the regression parameters. We also discuss the risk prediction and the goodness of fit test for our proposed model. Numerical studies show good finite sample performance of our proposed estimator. We applied our method to the HIVNET 012 study, a milestone trial of single-dose nevirapine in prevention of mother-to-child transmission of HIV. From the HIVNET 012 data analysis, single-dose nevirapine treatment is shown to improve 18-month infant survival significantly with appropriate adjustment of the maternal CD4 counts and the virus load.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":"340-352"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-019-09260-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-019-09260-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In survival analysis, Cox model is widely used for most clinical trial data. Alternatives include the additive hazard model, the accelerated failure time (AFT) model and a more general transformation model. All these models assume that the effects for all covariates are on the same scale. However, it is possible that for different covariates, the effects are on different scales. In this paper, we propose a shape-invariant hazard regression model that allows us to estimate the multiplicative treatment effect with adjustment of covariates that have non-multiplicative effects. We propose moment-based inference procedures for the regression parameters. We also discuss the risk prediction and the goodness of fit test for our proposed model. Numerical studies show good finite sample performance of our proposed estimator. We applied our method to the HIVNET 012 study, a milestone trial of single-dose nevirapine in prevention of mother-to-child transmission of HIV. From the HIVNET 012 data analysis, single-dose nevirapine treatment is shown to improve 18-month infant survival significantly with appropriate adjustment of the maternal CD4 counts and the virus load.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.