Dynamics of epidemics: Impact of easing restrictions and control of infection spread.

Chaos, solitons, and fractals Pub Date : 2021-01-01 Epub Date: 2020-11-12 DOI:10.1016/j.chaos.2020.110431
Silvio L T de Souza, Antonio M Batista, Iberê L Caldas, Kelly C Iarosz, José D Szezech
{"title":"Dynamics of epidemics: Impact of easing restrictions and control of infection spread.","authors":"Silvio L T de Souza,&nbsp;Antonio M Batista,&nbsp;Iberê L Caldas,&nbsp;Kelly C Iarosz,&nbsp;José D Szezech","doi":"10.1016/j.chaos.2020.110431","DOIUrl":null,"url":null,"abstract":"<p><p>During an infectious disease outbreak, mathematical models and computational simulations are essential tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools, we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate the restrictions. In general, as a consequence of easing restrictions, we obtain scenarios characterized by high spikes of infections indicating significant acceleration of the spreading disease. Finally, we show how such undesirable scenarios could be avoided by a control strategy of successive partial easing restrictions, namely, we tailor a successive sequence of the additional parameter to prevent spikes in phases of low rate of transmissibility.</p>","PeriodicalId":520585,"journal":{"name":"Chaos, solitons, and fractals","volume":" ","pages":"110431"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chaos.2020.110431","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, solitons, and fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2020.110431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

During an infectious disease outbreak, mathematical models and computational simulations are essential tools to characterize the epidemic dynamics and aid in design public health policies. Using these tools, we provide an overview of the possible scenarios for the COVID-19 pandemic in the phase of easing restrictions used to reopen the economy and society. To investigate the dynamics of this outbreak, we consider a deterministic compartmental model (SEIR model) with an additional parameter to simulate the restrictions. In general, as a consequence of easing restrictions, we obtain scenarios characterized by high spikes of infections indicating significant acceleration of the spreading disease. Finally, we show how such undesirable scenarios could be avoided by a control strategy of successive partial easing restrictions, namely, we tailor a successive sequence of the additional parameter to prevent spikes in phases of low rate of transmissibility.

Abstract Image

Abstract Image

Abstract Image

流行病的动态:放宽限制和控制感染传播的影响。
在传染病爆发期间,数学模型和计算模拟是描述流行病动态和帮助设计公共卫生政策的重要工具。利用这些工具,我们概述了在放松限制以重新开放经济和社会的阶段,COVID-19大流行的可能情景。为了研究这次爆发的动力学,我们考虑了一个带有附加参数的确定性隔间模型(SEIR模型)来模拟限制。总的来说,作为放宽限制的结果,我们得到的情景特征是感染高峰,表明疾病传播明显加速。最后,我们展示了如何通过连续部分放松限制的控制策略来避免这种不希望的情况,即,我们定制附加参数的连续序列以防止低传播率阶段的峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信