{"title":"A 6-Transistor Ultra-Low Power CMOS Voltage Reference with 0.02%/V Line Sensitivity.","authors":"Hayden Bialek, Matthew L Johnston, Arun Natarajan","doi":"10.1109/cicc48029.2020.9075941","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a technique for design of ultra-low power (ULP) CMOS voltage references achieving extremely low line sensitivity while maintaining state-of-the-art temperature insensitivity through the use of a 6-transistor (6T) structure. The proposed technique demonstrates good performance in sub-100 nm CMOS technologies. The 65-nm CMOS implementation occupies only 840 <i>μ</i>m<sup>2</sup> of area and consumes 28.6 pA from a 0.5 V supply. Measurements from 6 samples from the same wafer show an average line sensitivity of 0.02 %/V, a 10X improvement over previous 65 nm implementations, and an average temperature coefficient of 99.2 ppm/°C.</p>","PeriodicalId":74515,"journal":{"name":"Proceedings of the ... Custom Integrated Circuits Conference. Custom Integrated Circuits Conference","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/cicc48029.2020.9075941","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Custom Integrated Circuits Conference. Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cicc48029.2020.9075941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/4/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents a technique for design of ultra-low power (ULP) CMOS voltage references achieving extremely low line sensitivity while maintaining state-of-the-art temperature insensitivity through the use of a 6-transistor (6T) structure. The proposed technique demonstrates good performance in sub-100 nm CMOS technologies. The 65-nm CMOS implementation occupies only 840 μm2 of area and consumes 28.6 pA from a 0.5 V supply. Measurements from 6 samples from the same wafer show an average line sensitivity of 0.02 %/V, a 10X improvement over previous 65 nm implementations, and an average temperature coefficient of 99.2 ppm/°C.