Enhancement of Ionization Efficiency Using Zeolite in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Multiple Drugs in Cancer Cells (Mass Spectrometry of Multiple Drugs in Cells Using Zeolite).
{"title":"Enhancement of Ionization Efficiency Using Zeolite in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Multiple Drugs in Cancer Cells (Mass Spectrometry of Multiple Drugs in Cells Using Zeolite).","authors":"Hiroki Kannen, Shusei Nomura, Hisanao Hazama, Yasufumi Kaneda, Tatsuya Fujino, Kunio Awazu","doi":"10.5702/massspectrometry.A0091","DOIUrl":null,"url":null,"abstract":"<p><p>Combined therapy using photodynamic therapy (PDT) and chemotherapy has been proposed for anticancer-drug-resistant cancer cells. To evaluate the efficacy of such a combined therapy, the uptakes of an anticancer drug and a photosensitizer in cancer cells must be assessed. Mass spectrometry using matrix-assisted laser desorption/ionization can detect multiple drugs simultaneously. Human prostate cancer cells PC-3 or docetaxel-resistant cancer cells PC-3-DR were incubated in a serum-free medium containing a photosensitizer, protoporphyrin IX (PpIX), and an anticancer drug, docetaxel. A zeolite matrix was created by mixing 6-aza-2-thiothymine and NaY5.6 zeolite, and dissolving in water with 50% acetone. Ions were obtained with a time-of-flight mass spectrometer using a Nd:YAG laser at a wavelength of 355 nm. The cell morphology was preserved by washing the cells with ammonium acetate and drying in a vacuum after drug administration. Protonated PpIX (<i>m</i>/<i>z</i> 563.3) and the sodium adduct ion of docetaxel (<i>m</i>/<i>z</i> 829.9) were obtained from PC-3 cells simultaneously using the zeolite matrix. On the other hand, PpIX was detected but ions originating from docetaxel were not detected from PC-3-DR cells. The result indicated the efficacy of PDT for docetaxel-resistant cancer cells.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"9 1","pages":"A0091"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708746/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1
Abstract
Combined therapy using photodynamic therapy (PDT) and chemotherapy has been proposed for anticancer-drug-resistant cancer cells. To evaluate the efficacy of such a combined therapy, the uptakes of an anticancer drug and a photosensitizer in cancer cells must be assessed. Mass spectrometry using matrix-assisted laser desorption/ionization can detect multiple drugs simultaneously. Human prostate cancer cells PC-3 or docetaxel-resistant cancer cells PC-3-DR were incubated in a serum-free medium containing a photosensitizer, protoporphyrin IX (PpIX), and an anticancer drug, docetaxel. A zeolite matrix was created by mixing 6-aza-2-thiothymine and NaY5.6 zeolite, and dissolving in water with 50% acetone. Ions were obtained with a time-of-flight mass spectrometer using a Nd:YAG laser at a wavelength of 355 nm. The cell morphology was preserved by washing the cells with ammonium acetate and drying in a vacuum after drug administration. Protonated PpIX (m/z 563.3) and the sodium adduct ion of docetaxel (m/z 829.9) were obtained from PC-3 cells simultaneously using the zeolite matrix. On the other hand, PpIX was detected but ions originating from docetaxel were not detected from PC-3-DR cells. The result indicated the efficacy of PDT for docetaxel-resistant cancer cells.