Effect of substitution position of dibenzofuran-terminated robust hole-transporters on physical properties and TADF OLED performances†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Shoki Abe, Hisahiro Sasabe, Takeru Nakamura, Misaki Matsuya, Yu Saito, Takanori Hanayama, Suguru Araki, Kengo Kumada and Junji Kido
{"title":"Effect of substitution position of dibenzofuran-terminated robust hole-transporters on physical properties and TADF OLED performances†","authors":"Shoki Abe, Hisahiro Sasabe, Takeru Nakamura, Misaki Matsuya, Yu Saito, Takanori Hanayama, Suguru Araki, Kengo Kumada and Junji Kido","doi":"10.1039/D2ME00225F","DOIUrl":null,"url":null,"abstract":"<p >Although the wide-energy-gap hole-transport layer (HTL) is a key material to realizing high-efficiency and long-lifetime phosphorescent and thermally activated delayed fluorescent (TADF) organic light-emitting devices (OLEDs), a limited number of HTLs have been explored in previous studies. Accordingly, dibenzofuran-end-capped HTLs show promising performance in realizing a maximum external quantum efficiency (EQE) of 20% and a long lifetime of over 20?000 h at 1000 cd cm<small><sup>?2</sup></small> in phosphorescent and TADF OLEDs. This study investigates the effects of the substitution positions of <strong>TnDBFBP</strong> (<em>n</em> = 1–4) derivatives with four DBF-end-capping groups to extensively study the molecular design of robust multifunctional HTLs. <strong>TnDBFBP</strong> derivatives exhibited a high glass transition temperature (<em>T</em><small><sub>g</sub></small>) of ~149 °C, a triplet energy (<em>E</em><small><sub>T</sub></small>) value of ~2.9 eV, and anionic bond dissociation energy of ~1.75 eV depending on the substitution positions. Consequently, <strong>T1DBFBP</strong> realized green TADF OLEDs with an EQE of over 20% and an operational lifetime of 50% of the initial luminance (LT<small><sub>50</sub></small>) of 30?000 h at 1000 cd m<small><sup>?2</sup></small>. These performances are among the best reported by previous studies.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 3","pages":" 388-393"},"PeriodicalIF":3.2000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/me/d2me00225f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although the wide-energy-gap hole-transport layer (HTL) is a key material to realizing high-efficiency and long-lifetime phosphorescent and thermally activated delayed fluorescent (TADF) organic light-emitting devices (OLEDs), a limited number of HTLs have been explored in previous studies. Accordingly, dibenzofuran-end-capped HTLs show promising performance in realizing a maximum external quantum efficiency (EQE) of 20% and a long lifetime of over 20?000 h at 1000 cd cm?2 in phosphorescent and TADF OLEDs. This study investigates the effects of the substitution positions of TnDBFBP (n = 1–4) derivatives with four DBF-end-capping groups to extensively study the molecular design of robust multifunctional HTLs. TnDBFBP derivatives exhibited a high glass transition temperature (Tg) of ~149 °C, a triplet energy (ET) value of ~2.9 eV, and anionic bond dissociation energy of ~1.75 eV depending on the substitution positions. Consequently, T1DBFBP realized green TADF OLEDs with an EQE of over 20% and an operational lifetime of 50% of the initial luminance (LT50) of 30?000 h at 1000 cd m?2. These performances are among the best reported by previous studies.

Abstract Image

二苯并呋喃端端鲁棒空穴转运子取代位置对TADF OLED物理性能的影响
虽然宽能隙空穴传输层(HTL)是实现高效长寿命磷光和热激活延迟荧光(TADF)有机发光器件(oled)的关键材料,但以往研究中对HTL的探索数量有限。因此,二苯并呋喃端封的HTLs在实现20%的最大外量子效率(EQE)和超过20?000小时,1000厘米?2在磷光和TADF oled中。本研究研究了TnDBFBP (n = 1-4)衍生物与四个dbf末端旋盖基团的取代位置的影响,以广泛研究强效多功能HTLs的分子设计。TnDBFBP衍生物的玻璃化转变温度(Tg)为~149℃,三重态能(ET)值为~2.9 eV,阴离子键离解能为~1.75 eV,这取决于取代位置。因此,T1DBFBP实现了EQE超过20%的绿色TADF oled,其工作寿命为初始亮度(LT50) 30?在1000 CD / m下,000 h。这些表现是以前的研究报告中最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信