{"title":"Crowding effects on the dynamics of COVID-19 mathematical model.","authors":"Zizhen Zhang, Anwar Zeb, Ebraheem Alzahrani, Sohail Iqbal","doi":"10.1186/s13662-020-03137-3","DOIUrl":null,"url":null,"abstract":"<p><p>A disastrous coronavirus, which infects a normal person through droplets of infected person, has a route that is usually by mouth, eyes, nose or hands. These contact routes make it very dangerous as no one can get rid of it. The significant factor of increasing trend in COVID19 cases is the crowding factor, which we named \"crowding effects\". Modeling of this effect is highly necessary as it will help to predict the possible impact on the overall population. The nonlinear incidence rate is the best approach to modeling this effect. At the first step, the model is formulated by using a nonlinear incidence rate with inclusion of the crowding effect, then its positivity and proposed boundedness will be addressed leading to model dynamics using the reproductive number. Then to get the graphical results a nonstandard finite difference (NSFD) scheme and fourth order Runge-Kutta (RK4) method are applied.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-03137-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-03137-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
A disastrous coronavirus, which infects a normal person through droplets of infected person, has a route that is usually by mouth, eyes, nose or hands. These contact routes make it very dangerous as no one can get rid of it. The significant factor of increasing trend in COVID19 cases is the crowding factor, which we named "crowding effects". Modeling of this effect is highly necessary as it will help to predict the possible impact on the overall population. The nonlinear incidence rate is the best approach to modeling this effect. At the first step, the model is formulated by using a nonlinear incidence rate with inclusion of the crowding effect, then its positivity and proposed boundedness will be addressed leading to model dynamics using the reproductive number. Then to get the graphical results a nonstandard finite difference (NSFD) scheme and fourth order Runge-Kutta (RK4) method are applied.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.