An Indoor Navigation App using Computer Vision and Sign Recognition.

Giovanni Fusco, Seyed Ali Cheraghi, Leo Neat, James M Coughlan
{"title":"An Indoor Navigation App using Computer Vision and Sign Recognition.","authors":"Giovanni Fusco,&nbsp;Seyed Ali Cheraghi,&nbsp;Leo Neat,&nbsp;James M Coughlan","doi":"10.1007/978-3-030-58796-3_56","DOIUrl":null,"url":null,"abstract":"<p><p>Indoor navigation is a major challenge for people with visual impairments, who often lack access to visual cues such as informational signs, landmarks and structural features that people with normal vision rely on for wayfinding. Building on our recent work on a computer vision-based localization approach that runs in real time on a smartphone, we describe an accessible wayfinding iOS app we have created that provides turn-by-turn directions to a desired destination. The localization approach combines dead reckoning obtained using visual-inertial odometry (VIO) with information about the user's location in the environment from informational sign detections and map constraints. We explain how we estimate the user's distance from Exit signs appearing in the image, describe new improvements in the sign detection and range estimation algorithms, and outline our algorithm for determining appropriate turn-by-turn directions.</p>","PeriodicalId":90476,"journal":{"name":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","volume":"12376 ","pages":"485-494"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703403/pdf/nihms-1645298.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-58796-3_56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Indoor navigation is a major challenge for people with visual impairments, who often lack access to visual cues such as informational signs, landmarks and structural features that people with normal vision rely on for wayfinding. Building on our recent work on a computer vision-based localization approach that runs in real time on a smartphone, we describe an accessible wayfinding iOS app we have created that provides turn-by-turn directions to a desired destination. The localization approach combines dead reckoning obtained using visual-inertial odometry (VIO) with information about the user's location in the environment from informational sign detections and map constraints. We explain how we estimate the user's distance from Exit signs appearing in the image, describe new improvements in the sign detection and range estimation algorithms, and outline our algorithm for determining appropriate turn-by-turn directions.

使用计算机视觉和手势识别的室内导航应用程序。
室内导航对视力障碍人士来说是一项重大挑战,他们往往无法获得视力正常的人赖以寻路的视觉线索,如信息标志、地标和结构特征。基于我们最近在智能手机上实时运行的基于计算机视觉的定位方法的工作,我们描述了我们创造的一款可访问的寻路iOS应用,它可以提供到理想目的地的转弯方向。定位方法结合了视觉惯性里程计(VIO)获得的航位推算,以及来自信息标志检测和地图约束的用户在环境中的位置信息。我们解释了如何估计用户与图像中出现的出口标志的距离,描述了标志检测和距离估计算法的新改进,并概述了我们用于确定适当的转弯方向的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信