Yalun Li, Weilong Li, Jun Lin, Chunjing Lv, Guangdong Qiao
{"title":"miR-146a Enhances the Sensitivity of Breast Cancer Cells to Paclitaxel by Downregulating IRAK1.","authors":"Yalun Li, Weilong Li, Jun Lin, Chunjing Lv, Guangdong Qiao","doi":"10.1089/cbr.2020.3873","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> To investigate the effect of miR-146a on the sensitivity of breast cancer cells to paclitaxel (PTX). <b><i>Materials and Methods:</i></b> The mRNA expressions of miR-146a in normal breast cancer cells, MCF-7, and PTX-resistant breast cancer cells, MCF-7/PTX, were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). MTS was used to analyze the cytotoxicity treated with different concentrations of PTX. Overexpressed and silenced cell lines of miR-146a and interleukin-1 receptor-associated kinase 1 (IRAK1) were constructed, respectively. Cells were treated with PTX and observed the changes of cell morphology. Proliferation was detected by clone formation assay. Invasion and migration were measured by transwell. RT-PCR was applied to detect the expression of IRAK1 gene. Dual luciferase report was performed to validate the target relationship between miR-146a and IRAK1. Salvage experiments were used to further verify the relationship between miR-146a and IRAK1. <b><i>Results:</i></b> PTX reduces the viability of MCF-7 and MCF-7/PTX cells in a dose-dependent manner. The IC<sub>50</sub> of PTX in MCF-7 cells was significantly lower compared with MCF-7/PTX cells (<i>p</i> < 0.05). Compared with MCF-7/PTX cells, the expression of miR-146a gene in MCF-7 cells was significantly increased, while the expression of IRAK1 gene was significantly reduced (<i>p</i> < 0.05). Cell proliferation, invasion, and migration were decreased after miR-146a overexpression or IRAK1 silencing. Whereas, miR-146a silencing and IRAK1 overexpression can increase cell proliferation, invasion, and migration ability. Salvage experiments further verify that IRAK1 can weaken the role of miR-146a. <b><i>Conclusion:</i></b> miR-146a can enhance the sensitivity of breast cancer cells to PTX; the mechanism may be related to the downregulation of IRAK1.</p>","PeriodicalId":518937,"journal":{"name":"Cancer biotherapy & radiopharmaceuticals","volume":" ","pages":"624-635"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cbr.2020.3873","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer biotherapy & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2020.3873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Objective: To investigate the effect of miR-146a on the sensitivity of breast cancer cells to paclitaxel (PTX). Materials and Methods: The mRNA expressions of miR-146a in normal breast cancer cells, MCF-7, and PTX-resistant breast cancer cells, MCF-7/PTX, were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). MTS was used to analyze the cytotoxicity treated with different concentrations of PTX. Overexpressed and silenced cell lines of miR-146a and interleukin-1 receptor-associated kinase 1 (IRAK1) were constructed, respectively. Cells were treated with PTX and observed the changes of cell morphology. Proliferation was detected by clone formation assay. Invasion and migration were measured by transwell. RT-PCR was applied to detect the expression of IRAK1 gene. Dual luciferase report was performed to validate the target relationship between miR-146a and IRAK1. Salvage experiments were used to further verify the relationship between miR-146a and IRAK1. Results: PTX reduces the viability of MCF-7 and MCF-7/PTX cells in a dose-dependent manner. The IC50 of PTX in MCF-7 cells was significantly lower compared with MCF-7/PTX cells (p < 0.05). Compared with MCF-7/PTX cells, the expression of miR-146a gene in MCF-7 cells was significantly increased, while the expression of IRAK1 gene was significantly reduced (p < 0.05). Cell proliferation, invasion, and migration were decreased after miR-146a overexpression or IRAK1 silencing. Whereas, miR-146a silencing and IRAK1 overexpression can increase cell proliferation, invasion, and migration ability. Salvage experiments further verify that IRAK1 can weaken the role of miR-146a. Conclusion: miR-146a can enhance the sensitivity of breast cancer cells to PTX; the mechanism may be related to the downregulation of IRAK1.