Molecular characterization of solitary pulmonary nodules in dual-energy CT nonlinear image fusion technology.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qian Li, Huan Tan, Furong Lv
{"title":"Molecular characterization of solitary pulmonary nodules in dual-energy CT nonlinear image fusion technology.","authors":"Qian Li,&nbsp;Huan Tan,&nbsp;Furong Lv","doi":"10.1080/10799893.2020.1853158","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the feasibility and to optimize the parameters of nonlinear blending technique in dual-energy CT on solitary pulmonary nodules (SPN).</p><p><strong>Methods: </strong>The simulated enhanced SPN were used the mixture of nonionic iodinated contrast agent (Iopromide 370mgI/100 ml) and normal saline and then randomly placed inside an anthropomorphic chest phantom. The phantom was examined on SOMATOM definition flash with dual mode (80/140 kV) and single energy mode (120 kV) (the same CTDIvol). Nonlinear blending images and linear blending images with a weighting factor of 0.3 were generated and the image qualities were analyzed.</p><p><strong>Results: </strong>For different simulated density SPN, when 0 HU was chosen as the Blending Center (BC) and 0 to 30 HU were chosen as the Blending width (BW), the nonlinear blending images yielded a higher contrast-to-noise (CNR). There were significant differences in the image noise and signal-to-noise (SNR) of different simulated density SPN at non-linear blending images, linear blending images and 120 kV images (<i>p</i> < .05); But the differences of CNR between the three groups were not statistically significant (<i>p</i> > .05). The SNR of different simulated density SPN at non-linear blending images was significantly increased compared with it at linear blending images and 120 kV images (<i>p</i> < .05); And the image noise at non-linear blending was lower than it at linear blending images (<i>p</i> < .05).</p><p><strong>Conclusion: </strong>Nonlinear blending technique in dual-energy CT can increase the SNR of enhanced SPN, and it is helpful in diagnosis of SPN.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 1","pages":"95-99"},"PeriodicalIF":2.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2020.1853158","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2020.1853158","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Objective: To investigate the feasibility and to optimize the parameters of nonlinear blending technique in dual-energy CT on solitary pulmonary nodules (SPN).

Methods: The simulated enhanced SPN were used the mixture of nonionic iodinated contrast agent (Iopromide 370mgI/100 ml) and normal saline and then randomly placed inside an anthropomorphic chest phantom. The phantom was examined on SOMATOM definition flash with dual mode (80/140 kV) and single energy mode (120 kV) (the same CTDIvol). Nonlinear blending images and linear blending images with a weighting factor of 0.3 were generated and the image qualities were analyzed.

Results: For different simulated density SPN, when 0 HU was chosen as the Blending Center (BC) and 0 to 30 HU were chosen as the Blending width (BW), the nonlinear blending images yielded a higher contrast-to-noise (CNR). There were significant differences in the image noise and signal-to-noise (SNR) of different simulated density SPN at non-linear blending images, linear blending images and 120 kV images (p < .05); But the differences of CNR between the three groups were not statistically significant (p > .05). The SNR of different simulated density SPN at non-linear blending images was significantly increased compared with it at linear blending images and 120 kV images (p < .05); And the image noise at non-linear blending was lower than it at linear blending images (p < .05).

Conclusion: Nonlinear blending technique in dual-energy CT can increase the SNR of enhanced SPN, and it is helpful in diagnosis of SPN.

双能CT非线性图像融合技术对孤立性肺结节分子特征的影响。
目的:探讨双能CT非线性混合技术在孤立性肺结节(SPN)诊断中的可行性及参数优化。方法:模拟增强SPN采用非离子碘化造影剂(碘丙胺370mgI/100 ml)与生理盐水混合后随机放置于拟人胸廓内。在双模式(80/140 kV)和单能量模式(120 kV)(相同的CTDIvol)的SOMATOM定义闪光灯上检测模体。生成了加权系数为0.3的非线性混合图像和线性混合图像,并对图像质量进行了分析。结果:对于不同模拟密度的SPN,选择0 HU作为混合中心(BC),选择0 ~ 30 HU作为混合宽度(BW)时,非线性混合图像具有较高的噪比(CNR)。不同模拟密度SPN在非线性混合图像、线性混合图像和120 kV图像上的图像噪声和信噪比(SNR)有显著差异(p p > 0.05)。与线性混合图像和120 kV图像相比,非线性混合图像下不同模拟密度SPN的信噪比显著提高(p < 0.05)。结论:双能CT非线性混合技术可提高增强SPN的信噪比,有助于SPN的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信