Anne-Mari Määttä, Aino Salminen, Milla Pietiäinen, Jaakko Leskelä, Teemu Palviainen, Wolfgang Sattler, Juha Sinisalo, Veikko Salomaa, Jaakko Kaprio, Pirkko J Pussinen
{"title":"Endotoxemia is associated with an adverse metabolic profile.","authors":"Anne-Mari Määttä, Aino Salminen, Milla Pietiäinen, Jaakko Leskelä, Teemu Palviainen, Wolfgang Sattler, Juha Sinisalo, Veikko Salomaa, Jaakko Kaprio, Pirkko J Pussinen","doi":"10.1177/1753425920971702","DOIUrl":null,"url":null,"abstract":"<p><p>Our aim was to analyze whether endotoxemia, i.e. translocation of LPS to circulation, is reflected in the serum metabolic profile in a general population and in participants with cardiometabolic disorders. We investigated three Finnish cohorts separately and in a meta-analysis (<i>n</i> = 7178), namely population-based FINRISK97, FinnTwin16 consisting of young adult twins, and Parogene, a random cohort of cardiac patients. Endotoxemia was determined as serum LPS activity and metabolome by an NMR platform. Potential effects of body mass index (BMI), smoking, metabolic syndrome (MetS), and coronary heart disease (CHD) status were considered. Endotoxemia was directly associated with concentrations of VLDL, IDL, LDL, and small HDL lipoproteins, VLDL particle diameter, total fatty acids (FA), glycoprotein acetyls (GlycA), aromatic and branched-chain amino acids, and Glc, and inversely associated with concentration of large HDL, diameters of LDL and HDL, as well as unsaturation degree of FAs. Some of these disadvantageous associations were significantly stronger in smokers and subjects with high BMI, but did not differ between participants with different CHD status. In participants with MetS, however, the associations of endotoxemia with FA parameters and GlycA were particularly strong. The metabolic profile in endotoxemia appears highly adverse, involving several inflammatory characters and risk factors for cardiometabolic disorders.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1753425920971702","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1753425920971702","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 14
Abstract
Our aim was to analyze whether endotoxemia, i.e. translocation of LPS to circulation, is reflected in the serum metabolic profile in a general population and in participants with cardiometabolic disorders. We investigated three Finnish cohorts separately and in a meta-analysis (n = 7178), namely population-based FINRISK97, FinnTwin16 consisting of young adult twins, and Parogene, a random cohort of cardiac patients. Endotoxemia was determined as serum LPS activity and metabolome by an NMR platform. Potential effects of body mass index (BMI), smoking, metabolic syndrome (MetS), and coronary heart disease (CHD) status were considered. Endotoxemia was directly associated with concentrations of VLDL, IDL, LDL, and small HDL lipoproteins, VLDL particle diameter, total fatty acids (FA), glycoprotein acetyls (GlycA), aromatic and branched-chain amino acids, and Glc, and inversely associated with concentration of large HDL, diameters of LDL and HDL, as well as unsaturation degree of FAs. Some of these disadvantageous associations were significantly stronger in smokers and subjects with high BMI, but did not differ between participants with different CHD status. In participants with MetS, however, the associations of endotoxemia with FA parameters and GlycA were particularly strong. The metabolic profile in endotoxemia appears highly adverse, involving several inflammatory characters and risk factors for cardiometabolic disorders.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.