{"title":"Effect of ascorbic acid on morphology of post-thawed human adipose-derived stem cells.","authors":"Komang Ardi Wahyuningsih, Karina Karina, Imam Rosadi, Iis Rosliana, Wismo Reja Subroto","doi":"10.21037/sci-2020-011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ascorbic acid-2-phosphate has been reported to play a role in cell division and to suppress aging of cell. However, post-thawed cell morphology on various concentration of ascorbic acid is still unclear. In this study, we aimed to observe the morphology of post-thawed adipose-derived stem cells (ADSCs) in medium containing L-ascorbic acid-2-phosphate (LAA2P) (50 and 100 µg/mL).</p><p><strong>Methods: </strong>The cells were isolated from adipose tissue. Isolated cells then cultured and cryopreserved in liquid nitrogen. We detected mRNA expression of type 1 collagen on day 5. Cell seeded in T25 flask using basal medium [Dulbecco's modified Eagle's medium (DMEM) only] as a control group, DMEM with 10% fetal bovine serum (FBS) and antibiotics as DMFA group, while DMFA with ascorbic acid (50 and 100 µg/mL) as ascorbic acid treatment group.</p><p><strong>Results: </strong>The results showed that the cells cultured in DMEM only attached until 96 hours of observation while serum groups with or without ascorbic acid supplementation showed the proliferation until 240 hours of observation. The highest spread size of cell was in a serum group without ascorbic acid supplementation and the highest yield of cells showed in a group with 50 µg/mL of ascorbic acid supplementation. Reduced mRNA expression of type 1 collagen which related to aging was showed in cells cultured without ascorbic acid supplementation.</p><p><strong>Conclusions: </strong>These results showed that ascorbic acid increased the cell division and suppressed the aging processes indicated by normal spread cell in size compared to cell cultured in DMFA without ascorbic acid supplementation.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"16"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-011","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cell investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/sci-2020-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6
Abstract
Background: Ascorbic acid-2-phosphate has been reported to play a role in cell division and to suppress aging of cell. However, post-thawed cell morphology on various concentration of ascorbic acid is still unclear. In this study, we aimed to observe the morphology of post-thawed adipose-derived stem cells (ADSCs) in medium containing L-ascorbic acid-2-phosphate (LAA2P) (50 and 100 µg/mL).
Methods: The cells were isolated from adipose tissue. Isolated cells then cultured and cryopreserved in liquid nitrogen. We detected mRNA expression of type 1 collagen on day 5. Cell seeded in T25 flask using basal medium [Dulbecco's modified Eagle's medium (DMEM) only] as a control group, DMEM with 10% fetal bovine serum (FBS) and antibiotics as DMFA group, while DMFA with ascorbic acid (50 and 100 µg/mL) as ascorbic acid treatment group.
Results: The results showed that the cells cultured in DMEM only attached until 96 hours of observation while serum groups with or without ascorbic acid supplementation showed the proliferation until 240 hours of observation. The highest spread size of cell was in a serum group without ascorbic acid supplementation and the highest yield of cells showed in a group with 50 µg/mL of ascorbic acid supplementation. Reduced mRNA expression of type 1 collagen which related to aging was showed in cells cultured without ascorbic acid supplementation.
Conclusions: These results showed that ascorbic acid increased the cell division and suppressed the aging processes indicated by normal spread cell in size compared to cell cultured in DMFA without ascorbic acid supplementation.
期刊介绍:
The Stem Cell Investigation (SCI; Stem Cell Investig; Online ISSN: 2313-0792) is a free access, peer-reviewed online journal covering basic, translational, and clinical research on all aspects of stem cells. It publishes original research articles and reviews on embryonic stem cells, induced pluripotent stem cells, adult tissue-specific stem/progenitor cells, cancer stem like cells, stem cell niche, stem cell technology, stem cell based drug discovery, and regenerative medicine. Stem Cell Investigation is indexed in PubMed/PMC since April, 2016.