{"title":"Bayesian information criterion approximations to Bayes factors for univariate and multivariate logistic regression models.","authors":"Katharina Selig, Pamela Shaw, Donna Ankerst","doi":"10.1515/ijb-2020-0045","DOIUrl":null,"url":null,"abstract":"<p><p>Schwarz's criterion, also known as the Bayesian Information Criterion or BIC, is commonly used for model selection in logistic regression due to its simple intuitive formula. For tests of nested hypotheses in independent and identically distributed data as well as in Normal linear regression, previous results have motivated use of Schwarz's criterion by its consistent approximation to the Bayes factor (BF), defined as the ratio of posterior to prior model odds. Furthermore, under construction of an intuitive unit-information prior for the parameters of interest to test for inclusion in the nested models, previous results have shown that Schwarz's criterion approximates the BF to higher order in the neighborhood of the simpler nested model. This paper extends these results to univariate and multivariate logistic regression, providing approximations to the BF for arbitrary prior distributions and definitions of the unit-information prior corresponding to Schwarz's approximation. Simulations show accuracies of the approximations for small samples sizes as well as comparisons to conclusions from frequentist testing. We present an application in prostate cancer, the motivating setting for our work, which illustrates the approximation for large data sets in a practical example.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 2","pages":"241-266"},"PeriodicalIF":1.2000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2020-0045","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0045","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Schwarz's criterion, also known as the Bayesian Information Criterion or BIC, is commonly used for model selection in logistic regression due to its simple intuitive formula. For tests of nested hypotheses in independent and identically distributed data as well as in Normal linear regression, previous results have motivated use of Schwarz's criterion by its consistent approximation to the Bayes factor (BF), defined as the ratio of posterior to prior model odds. Furthermore, under construction of an intuitive unit-information prior for the parameters of interest to test for inclusion in the nested models, previous results have shown that Schwarz's criterion approximates the BF to higher order in the neighborhood of the simpler nested model. This paper extends these results to univariate and multivariate logistic regression, providing approximations to the BF for arbitrary prior distributions and definitions of the unit-information prior corresponding to Schwarz's approximation. Simulations show accuracies of the approximations for small samples sizes as well as comparisons to conclusions from frequentist testing. We present an application in prostate cancer, the motivating setting for our work, which illustrates the approximation for large data sets in a practical example.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.