Rosa26 docking sites for investigating genetic circuit silencing in stem cells.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2020-08-19 eCollection Date: 2020-01-01 DOI:10.1093/synbio/ysaa014
Michael Fitzgerald, Mark Livingston, Chelsea Gibbs, Tara L Deans
{"title":"Rosa26 docking sites for investigating genetic circuit silencing in stem cells.","authors":"Michael Fitzgerald, Mark Livingston, Chelsea Gibbs, Tara L Deans","doi":"10.1093/synbio/ysaa014","DOIUrl":null,"url":null,"abstract":"<p><p>Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"5 1","pages":"ysaa014"},"PeriodicalIF":2.6000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/67/56/ysaa014.PMC7644442.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysaa014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.

Abstract Image

Abstract Image

Abstract Image

用于研究干细胞基因回路沉默的 Rosa26 对接位点。
哺乳动物合成生物学的方法改变了如何对细胞进行编程,使其具有可靠和可预测的行为,然而,大多数哺乳动物合成生物学都是利用易于生长和易于转染的永生化细胞系完成的。整合到这些永生化细胞系基因组中的基因回路可在许多代内保持功能,通常是在细胞的一生中保持功能,但当基因回路整合到干细胞基因组中时,在几代内就会观察到基因沉默。为了研究干细胞中沉默基因回路的重新激活,我们对小鼠多能干细胞的 Rosa26 基因座进行了改造,使其含有基因回路特异性整合的对接位点。我们发现,加入组蛋白去乙酰化酶抑制剂丁酸钠可逆转基因回路的沉默。这些研究结果展示了一种在多能干细胞中重新激活基因回路功能的方法,以确保基因回路在多代后仍能发挥强大功能。总之,这项工作介绍了一种克服多能干细胞中基因回路沉默的方法,可使多能干细胞中的基因回路发挥长期功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信