Lactate dehydrogenase A inhibition by small molecular entities: steps in the right direction.

Oncoscience Pub Date : 2020-09-09 eCollection Date: 2020-09-01 DOI:10.18632/oncoscience.519
Btissame El Hassouni, Marika Franczak, Mjriam Capula, Christian M Vonk, Valentina M Gomez, Ryszard T Smolenski, Carlotta Granchi, Godefridus J Peters, Filippo Minutolo, Elisa Giovannetti
{"title":"Lactate dehydrogenase A inhibition by small molecular entities: steps in the right direction.","authors":"Btissame El Hassouni,&nbsp;Marika Franczak,&nbsp;Mjriam Capula,&nbsp;Christian M Vonk,&nbsp;Valentina M Gomez,&nbsp;Ryszard T Smolenski,&nbsp;Carlotta Granchi,&nbsp;Godefridus J Peters,&nbsp;Filippo Minutolo,&nbsp;Elisa Giovannetti","doi":"10.18632/oncoscience.519","DOIUrl":null,"url":null,"abstract":"<p><p>Direct targeting of energy metabolism to defeat cancer is not a recent strategy. Although quite a few drugs use cellular metabolism for their antitumor effect, no direct inhibitors of energy metabolism have been approved by the FDA. Currently, several inhibitors of lactate dehydrogenase A (LDH-A), a key player in glycolysis, are in development. Earlier, we demonstrated the efficacy of <i>N</i>-hydroxyindole-based LDH-A inhibitors in different cancer types. In this study we describe the efficacy of NHI-Glc-2, which is designed to dual target cancer cells, by exploiting a simultaneous enhanced glucose uptake by overexpressed glucose transporter 1 (GLUT1) and by inhibition of LDH-A. NHI-Glc-2 inhibits LDH-A enzyme activity, PANC-1 cell growth and disrupts spheroid integrity, with an overall effect that is more pronounced when combined with gemcitabine.</p>","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7640902/pdf/","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Direct targeting of energy metabolism to defeat cancer is not a recent strategy. Although quite a few drugs use cellular metabolism for their antitumor effect, no direct inhibitors of energy metabolism have been approved by the FDA. Currently, several inhibitors of lactate dehydrogenase A (LDH-A), a key player in glycolysis, are in development. Earlier, we demonstrated the efficacy of N-hydroxyindole-based LDH-A inhibitors in different cancer types. In this study we describe the efficacy of NHI-Glc-2, which is designed to dual target cancer cells, by exploiting a simultaneous enhanced glucose uptake by overexpressed glucose transporter 1 (GLUT1) and by inhibition of LDH-A. NHI-Glc-2 inhibits LDH-A enzyme activity, PANC-1 cell growth and disrupts spheroid integrity, with an overall effect that is more pronounced when combined with gemcitabine.

Abstract Image

Abstract Image

Abstract Image

乳酸脱氢酶A的小分子实体抑制:正确方向的步骤。
直接以能量代谢为目标来战胜癌症并不是最近才出现的策略。虽然相当多的药物利用细胞代谢来达到抗肿瘤的效果,但没有直接的能量代谢抑制剂被FDA批准。目前,一些乳酸脱氢酶A (LDH-A)的抑制剂正在开发中,乳酸脱氢酶A是糖酵解的关键角色。早些时候,我们证明了基于n -羟基吲哚的ldl - a抑制剂对不同类型癌症的疗效。在这项研究中,我们描述了NHI-Glc-2的功效,它被设计成双重靶向癌细胞,通过利用过度表达的葡萄糖转运蛋白1 (GLUT1)和抑制ldl - a同时增强葡萄糖摄取。NHI-Glc-2抑制ldl - a酶活性、PANC-1细胞生长并破坏球体完整性,当与吉西他滨联合使用时,总体效果更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信