Genetic background impacts the timing of synaptonemal complex breakdown in Drosophila melanogaster.

IF 2.5 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chromosoma Pub Date : 2020-12-01 Epub Date: 2020-10-17 DOI:10.1007/s00412-020-00742-9
Emily R Wesley, R Scott Hawley, Katherine Kretovich Billmyre
{"title":"Genetic background impacts the timing of synaptonemal complex breakdown in Drosophila melanogaster.","authors":"Emily R Wesley, R Scott Hawley, Katherine Kretovich Billmyre","doi":"10.1007/s00412-020-00742-9","DOIUrl":null,"url":null,"abstract":"<p><p>Experiments performed in different genetic backgrounds occasionally exhibit failure in experimental reproducibility. This is a serious issue in Drosophila where there are no standard control stocks. Here, we illustrate the importance of controlling genetic background by showing that the timing of a major meiotic event, the breakdown of the synaptonemal complex (SC), varies in different genetic backgrounds. We assessed SC breakdown in three different control stocks and found that in one control stock, y w; sv<sup>spa-pol</sup>, the SC broke down earlier than in Oregon-R and w<sup>1118</sup> stocks. We further examined SC breakdown in these three control backgrounds with flies heterozygous for a null mutation in c(3)G, which encodes a key structural component of the SC. Flies heterozygous for c(3)G displayed differences in the timing of SC breakdown in different control backgrounds, providing evidence of a sensitizing effect of this mutation. These observations suggest that SC maintenance is associated with the dosage of c(3)G in some backgrounds. Lastly, chromosome segregation was not affected by premature SC breakdown in mid-prophase, consistent with previous findings that chromosome segregation is not dependent on full-length SC in mid-prophase. Thus, genetic background is an important variable to consider with respect to SC behavior during Drosophila meiosis.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosoma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00412-020-00742-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments performed in different genetic backgrounds occasionally exhibit failure in experimental reproducibility. This is a serious issue in Drosophila where there are no standard control stocks. Here, we illustrate the importance of controlling genetic background by showing that the timing of a major meiotic event, the breakdown of the synaptonemal complex (SC), varies in different genetic backgrounds. We assessed SC breakdown in three different control stocks and found that in one control stock, y w; svspa-pol, the SC broke down earlier than in Oregon-R and w1118 stocks. We further examined SC breakdown in these three control backgrounds with flies heterozygous for a null mutation in c(3)G, which encodes a key structural component of the SC. Flies heterozygous for c(3)G displayed differences in the timing of SC breakdown in different control backgrounds, providing evidence of a sensitizing effect of this mutation. These observations suggest that SC maintenance is associated with the dosage of c(3)G in some backgrounds. Lastly, chromosome segregation was not affected by premature SC breakdown in mid-prophase, consistent with previous findings that chromosome segregation is not dependent on full-length SC in mid-prophase. Thus, genetic background is an important variable to consider with respect to SC behavior during Drosophila meiosis.

遗传背景对黑腹果蝇突触复合体分解时间的影响
在不同遗传背景下进行的实验偶尔会出现实验重现性失效的情况。这在果蝇中是一个严重的问题,因为果蝇没有标准对照种群。在这里,我们通过展示减数分裂的一个重要事件--突触复合体(SC)的分解--的时间在不同的遗传背景下是不同的,来说明控制遗传背景的重要性。我们评估了三个不同对照种群的SC分解情况,发现其中一个对照种群(y w; svspa-pol)的SC分解时间早于俄勒冈-R和w1118种群。我们用编码 SC 关键结构成分的 c(3)G 基因发生了无效突变的杂合子蝇进一步检测了这三种对照种群中 SC 的分解情况。在不同的对照背景下,c(3)G杂合子苍蝇的SC分解时间不同,这证明了该突变的敏感效应。这些观察结果表明,在某些背景中,SC的维持与c(3)G的剂量有关。最后,染色体的分离并没有受到中期SC过早分解的影响,这与之前的发现一致,即染色体的分离并不依赖于中期的全长SC。因此,遗传背景是果蝇减数分裂过程中SC行为的一个重要考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chromosoma
Chromosoma 生物-生化与分子生物学
CiteScore
3.30
自引率
6.20%
发文量
17
审稿时长
1 months
期刊介绍: Chromosoma publishes research and review articles on the functional organization of the eukaryotic cell nucleus, with a particular emphasis on the structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis; the function and dynamics of subnuclear compartments; the nuclear envelope and nucleocytoplasmic interactions, and more. The scope of Chromosoma encompasses genetic, biophysical, molecular and cell biological studies. Average time from receipt of contributions to first decision: 22 days Publishes research and review articles on the functional organization of the eukaryotic cell nucleus Topics include structure and dynamics of chromatin and chromosomes; the expression and replication of genomes; genome organization and evolution; the segregation of genomes during meiosis and mitosis and more Encompasses genetic, biophysical, molecular and cell biological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信