{"title":"Effects of covariates on alternating recurrent events in accelerated failure time models.","authors":"Moumita Chatterjee, Sugata Sen Roy","doi":"10.1515/ijb-2019-0099","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we model alternately occurring recurrent events and study the effects of covariates on each of the survival times. This is done through the accelerated failure time models, where we use lagged event times to capture the dependence over both the cycles and the two events. However, since the errors of the two regression models are likely to be correlated, we assume a bivariate error distribution. Since most event time distributions do not readily extend to bivariate forms, we take recourse to copula functions to build up the bivariate distributions from the marginals. The model parameters are then estimated using the maximum likelihood method and the properties of the estimators studied. A data on respiratory disease is used to illustrate the technique. A simulation study is also conducted to check for consistency.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 2","pages":"295-315"},"PeriodicalIF":1.2000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we model alternately occurring recurrent events and study the effects of covariates on each of the survival times. This is done through the accelerated failure time models, where we use lagged event times to capture the dependence over both the cycles and the two events. However, since the errors of the two regression models are likely to be correlated, we assume a bivariate error distribution. Since most event time distributions do not readily extend to bivariate forms, we take recourse to copula functions to build up the bivariate distributions from the marginals. The model parameters are then estimated using the maximum likelihood method and the properties of the estimators studied. A data on respiratory disease is used to illustrate the technique. A simulation study is also conducted to check for consistency.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.