SPECIES TREE INFERENCE FROM GENOMIC SEQUENCES USING THE LOG-DET DISTANCE.

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
SIAM Journal on Applied Algebra and Geometry Pub Date : 2019-01-01 Epub Date: 2019-03-14 DOI:10.1137/18m1194134
Elizabeth S Allman, Colby Long, John A Rhodes
{"title":"SPECIES TREE INFERENCE FROM GENOMIC SEQUENCES USING THE LOG-DET DISTANCE.","authors":"Elizabeth S Allman, Colby Long, John A Rhodes","doi":"10.1137/18m1194134","DOIUrl":null,"url":null,"abstract":"<p><p>The log-det distance between two aligned DNA sequences was introduced as a tool for statistically consistent inference of a gene tree under simple non-mixture models of sequence evolution. Here we prove that the log-det distance, coupled with a distance-based tree construction method, also permits consistent inference of species trees under mixture models appropriate to aligned genomic-scale sequences data. Data may include sites from many genetic loci, which evolved on different gene trees due to incomplete lineage sorting on an ultrametric species tree, with different time-reversible substitution processes. The simplicity and speed of distance-based inference suggests log-det based methods should serve as benchmarks for judging more elaborate and computationally-intensive species trees inference methods.</p>","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643864/pdf/nihms-1554294.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/18m1194134","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The log-det distance between two aligned DNA sequences was introduced as a tool for statistically consistent inference of a gene tree under simple non-mixture models of sequence evolution. Here we prove that the log-det distance, coupled with a distance-based tree construction method, also permits consistent inference of species trees under mixture models appropriate to aligned genomic-scale sequences data. Data may include sites from many genetic loci, which evolved on different gene trees due to incomplete lineage sorting on an ultrametric species tree, with different time-reversible substitution processes. The simplicity and speed of distance-based inference suggests log-det based methods should serve as benchmarks for judging more elaborate and computationally-intensive species trees inference methods.

Abstract Image

Abstract Image

使用 log-det 距离从基因组序列推断物种树。
两个对齐的 DNA 序列之间的对数距离(log-det distance)被引入作为一种工具,用于在简单的非混合物序列进化模型下对基因树进行统计上一致的推断。在这里,我们证明对数-det 距离与基于距离的树构建方法相结合,也能在适合基因组尺度序列数据的混合模型下一致地推断物种树。数据可能包括来自许多基因位点的位点,这些位点在不同的基因树上进化,这是因为超对称物种树上的世系排序不完全,具有不同的时间可逆替换过程。基于距离推断的简单性和速度表明,基于 log-det 的方法应作为判断更复杂和计算密集型物种树推断方法的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信