A Probabilistic Characterization of Negative Definite Functions.

High dimensional probability Pub Date : 2019-01-01 Epub Date: 2019-11-27 DOI:10.1007/978-3-030-26391-1_5
Fuchang Gao
{"title":"A Probabilistic Characterization of Negative Definite Functions.","authors":"Fuchang Gao","doi":"10.1007/978-3-030-26391-1_5","DOIUrl":null,"url":null,"abstract":"<p><p>It is proved that a continuous function <i>f</i> on ℝ <sup><i>n</i></sup> is negative definite if and only if it is polynomially bounded and satisfies the inequality <math><mrow><mi>E</mi> <mi>f</mi> <mo>(</mo> <mi>X</mi> <mo>-</mo> <mi>Y</mi> <mo>)</mo> <mo>≤</mo> <mrow><mi>E</mi> <mi>f</mi> <mo>(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>)</mo></mrow> </mrow> </math> for all i.i.d. random vectors <i>X</i> and <i>Y</i> in ℝ <sup><i>n</i></sup> . The proof uses Fourier transforms of tempered distributions. The \"only if\" part has been proved earlier by Lifshits et al. (A probabilistic inequality related to negative definite functions.</p>","PeriodicalId":93102,"journal":{"name":"High dimensional probability","volume":"74 ","pages":"41-53"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604715/pdf/nihms-1631559.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High dimensional probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-26391-1_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/11/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is proved that a continuous function f on ℝ n is negative definite if and only if it is polynomially bounded and satisfies the inequality E f ( X - Y ) E f ( X + Y ) for all i.i.d. random vectors X and Y in ℝ n . The proof uses Fourier transforms of tempered distributions. The "only if" part has been proved earlier by Lifshits et al. (A probabilistic inequality related to negative definite functions.

负定函数的概率表征。
证明了一个连续函数f是负定当且仅当它是多项式有界的,并且对任意i个随机向量X和Y满足不等式ef (X - Y)≤ef (X + Y)。证明使用了缓变分布的傅里叶变换。先前Lifshits等人已经证明了“only if”部分(一个与负定函数相关的概率不等式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信