Canadian Association of Radiologists White Paper on De-Identification of Medical Imaging: Part 1, General Principles.

William Parker, Jacob L Jaremko, Mark Cicero, Marleine Azar, Khaled El-Emam, Bruce G Gray, Casey Hurrell, Flavie Lavoie-Cardinal, Benoit Desjardins, Andrea Lum, Lori Sheremeta, Emil Lee, Caroline Reinhold, An Tang, Rebecca Bromwich
{"title":"Canadian Association of Radiologists White Paper on De-Identification of Medical Imaging: Part 1, General Principles.","authors":"William Parker,&nbsp;Jacob L Jaremko,&nbsp;Mark Cicero,&nbsp;Marleine Azar,&nbsp;Khaled El-Emam,&nbsp;Bruce G Gray,&nbsp;Casey Hurrell,&nbsp;Flavie Lavoie-Cardinal,&nbsp;Benoit Desjardins,&nbsp;Andrea Lum,&nbsp;Lori Sheremeta,&nbsp;Emil Lee,&nbsp;Caroline Reinhold,&nbsp;An Tang,&nbsp;Rebecca Bromwich","doi":"10.1177/0846537120967349","DOIUrl":null,"url":null,"abstract":"<p><p>The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 1 of this article will inform CAR members on principles of de-identification, pseudonymization, encryption, direct and indirect identifiers, k-anonymization, risks of reidentification, implementations, data set release models, and validation of AI algorithms, with a view to developing appropriate standards to safeguard patient information effectively.</p>","PeriodicalId":444006,"journal":{"name":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","volume":" ","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0846537120967349","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0846537120967349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 1 of this article will inform CAR members on principles of de-identification, pseudonymization, encryption, direct and indirect identifiers, k-anonymization, risks of reidentification, implementations, data set release models, and validation of AI algorithms, with a view to developing appropriate standards to safeguard patient information effectively.

加拿大放射医师协会医学成像去识别白皮书:第1部分,一般原则。
大数据、放射组学、机器学习和人工智能(AI)算法在放射学中的应用需要访问包含个人健康信息的大型数据集。由于机器学习项目通常需要不同站点之间的协作或向第三方传输数据,因此需要采取预防措施来保护患者隐私。需要采取安全措施来防止无意中访问和传输可识别信息。加拿大放射科医师协会(CAR)是全国放射学的代言人,致力于促进以患者为中心的影像、终身学习和研究的最高标准。中非共和国设立了一个人工智能道德和法律常设委员会,其任务是在数据管理、获取卫生保健数据、去识别和问责做法方面指导医学成像界的最佳做法。本文第1部分将向CAR成员介绍去身份化、假名化、加密、直接和间接标识符、k-匿名化、重新识别的风险、实现、数据集发布模型和人工智能算法的验证等原则,以期制定适当的标准来有效保护患者信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信