Beyond the p-value: Bayesian Statistics and Causation.

Valerie Ringland, Michael A Lewis, Daniel Dunleavy
{"title":"Beyond the <i>p</i>-value: Bayesian Statistics and Causation.","authors":"Valerie Ringland,&nbsp;Michael A Lewis,&nbsp;Daniel Dunleavy","doi":"10.1080/26408066.2020.1832011","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical paradigms limit the perspective and tools social work researchers use to study the world and answer questions impacting people and policy. Currently, quantitative social work researchers overwhelmingly rely on the frequentist paradigm of statistics. This paper discusses foundational differences between the frequentist and Bayesian statistical paradigms, describes basic concepts of Bayesian analysis, compares Bayesian and frequentist statistical analysis for a sample social work problem, and introduces two types of causal analyses built on Bayesian statistical thinking: counterfactual causality, and causality based on work by computer scientist Judea Pearl. Implications for social work research are discussed.</p>","PeriodicalId":73742,"journal":{"name":"Journal of evidence-based social work (2019)","volume":"18 3","pages":"284-307"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/26408066.2020.1832011","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of evidence-based social work (2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26408066.2020.1832011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Statistical paradigms limit the perspective and tools social work researchers use to study the world and answer questions impacting people and policy. Currently, quantitative social work researchers overwhelmingly rely on the frequentist paradigm of statistics. This paper discusses foundational differences between the frequentist and Bayesian statistical paradigms, describes basic concepts of Bayesian analysis, compares Bayesian and frequentist statistical analysis for a sample social work problem, and introduces two types of causal analyses built on Bayesian statistical thinking: counterfactual causality, and causality based on work by computer scientist Judea Pearl. Implications for social work research are discussed.

超越p值:贝叶斯统计和因果关系。
统计范式限制了社会工作研究者用来研究世界和回答影响人们和政策的问题的视角和工具。目前,定量社会工作研究人员绝大多数依赖于统计的频率主义范式。本文讨论了频率论和贝叶斯统计范式之间的基本差异,描述了贝叶斯分析的基本概念,比较了贝叶斯和频率论统计分析对一个社会工作问题的示例,并介绍了两种基于贝叶斯统计思维的因果分析:反事实因果关系和基于计算机科学家Judea Pearl工作的因果关系。讨论了对社会工作研究的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信