{"title":"Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction.","authors":"Abdelhamid Ajbar, Rubayyi T Alqahtani","doi":"10.1186/s13662-020-02997-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, the dynamical behavior of a SEIR epidemic system that takes into account governmental action and individual reaction is investigated. The transmission rate takes into account the impact of governmental action modeled as a step function while the decreasing contacts among individuals responding to the severity of the pandemic is modeled as a decreasing exponential function. We show that the proposed model is capable of predicting Hopf bifurcation points for a wide range of physically realistic parameters for the COVID-19 disease. In this regard, the model predicts periodic behavior that emanates from one Hopf point. The model also predicts stable oscillations connecting two Hopf points. The effect of the different model parameters on the existence of such periodic behavior is numerically investigated. Useful diagrams are constructed that delineate the range of periodic behavior predicted by the model.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"541"},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02997-z","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02997-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, the dynamical behavior of a SEIR epidemic system that takes into account governmental action and individual reaction is investigated. The transmission rate takes into account the impact of governmental action modeled as a step function while the decreasing contacts among individuals responding to the severity of the pandemic is modeled as a decreasing exponential function. We show that the proposed model is capable of predicting Hopf bifurcation points for a wide range of physically realistic parameters for the COVID-19 disease. In this regard, the model predicts periodic behavior that emanates from one Hopf point. The model also predicts stable oscillations connecting two Hopf points. The effect of the different model parameters on the existence of such periodic behavior is numerically investigated. Useful diagrams are constructed that delineate the range of periodic behavior predicted by the model.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.