{"title":"A numerical solution by alternative Legendre polynomials on a model for novel coronavirus (COVID-19).","authors":"Elham Hashemizadeh, Mohammad Ali Ebadi","doi":"10.1186/s13662-020-02984-4","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. This paper provides a numerical solution for the mathematical model of the novel coronavirus by the application of alternative Legendre polynomials to find the transmissibility of COVID-19. The mathematical model of the present problem is a system of differential equations. The goal is to convert this system to an algebraic system by use of the useful property of alternative Legendre polynomials and collocation method that can be solved easily. We compare the results of this method with those of the Runge-Kutta method to show the efficiency of the proposed method.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"527"},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02984-4","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02984-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. This paper provides a numerical solution for the mathematical model of the novel coronavirus by the application of alternative Legendre polynomials to find the transmissibility of COVID-19. The mathematical model of the present problem is a system of differential equations. The goal is to convert this system to an algebraic system by use of the useful property of alternative Legendre polynomials and collocation method that can be solved easily. We compare the results of this method with those of the Runge-Kutta method to show the efficiency of the proposed method.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.