A numerical solution by alternative Legendre polynomials on a model for novel coronavirus (COVID-19).

IF 4.1 3区 数学 Q1 Mathematics
Advances in Difference Equations Pub Date : 2020-01-01 Epub Date: 2020-09-25 DOI:10.1186/s13662-020-02984-4
Elham Hashemizadeh, Mohammad Ali Ebadi
{"title":"A numerical solution by alternative Legendre polynomials on a model for novel coronavirus (COVID-19).","authors":"Elham Hashemizadeh,&nbsp;Mohammad Ali Ebadi","doi":"10.1186/s13662-020-02984-4","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. This paper provides a numerical solution for the mathematical model of the novel coronavirus by the application of alternative Legendre polynomials to find the transmissibility of COVID-19. The mathematical model of the present problem is a system of differential equations. The goal is to convert this system to an algebraic system by use of the useful property of alternative Legendre polynomials and collocation method that can be solved easily. We compare the results of this method with those of the Runge-Kutta method to show the efficiency of the proposed method.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2020 1","pages":"527"},"PeriodicalIF":4.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-020-02984-4","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-020-02984-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. This paper provides a numerical solution for the mathematical model of the novel coronavirus by the application of alternative Legendre polynomials to find the transmissibility of COVID-19. The mathematical model of the present problem is a system of differential equations. The goal is to convert this system to an algebraic system by use of the useful property of alternative Legendre polynomials and collocation method that can be solved easily. We compare the results of this method with those of the Runge-Kutta method to show the efficiency of the proposed method.

Abstract Image

Abstract Image

新型冠状病毒(COVID-19)模型的交替Legendre多项式数值解。
冠状病毒病(COVID-19)是由一种新发现的冠状病毒引起的传染病。本文利用交替勒让德多项式对新型冠状病毒的数学模型进行了数值求解,求解出了新型冠状病毒的传播率。这个问题的数学模型是一个微分方程组。目的是利用交替勒让德多项式的有用性质和易于求解的配置方法,将该方程组转化为代数方程组。将该方法的结果与龙格-库塔方法的结果进行了比较,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions. The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between. The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations. Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信