{"title":"A Three-Level Mixed Model to Account for the Correlation at both the Between-Day and the Within-Day Level for Ecological Momentary Assessments.","authors":"Qianheng Ma, Robin Mermelstein, Donald Hedeker","doi":"10.1007/s10742-020-00220-w","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological Momentary Assessment (EMA) studies aim to explore the interaction between subjects' psychological states and real environmental factors. During the EMA studies, participants can receive prompted assessments intensively across days and within each day, which results in three-level longitudinal data, e.g., subject-level (level-3), day-level nested in subject (level-2) and assessment-level nested in each day (level-1). Those three-level data may exhibit complex longitudinal correlation structure but ignoring or mis-specifying the within-subject correlation structure can lead to bias on the estimation of the key effects and the intraclass correlation. Given the three-level EMA data and the time stamps of the responses, we proposed a linear mixed effects model with random effects at each level. In this model, we accounted for level-2 autocorrelation and level-1 autocorrelation and showed how structural information from the three-level data improved the fit of the model. With real time stamps of the assessments, we also provided a useful extension of this proposed model to deal with the issue of irregular-spacing in EMA assessments.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10742-020-00220-w","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-020-00220-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1
Abstract
Ecological Momentary Assessment (EMA) studies aim to explore the interaction between subjects' psychological states and real environmental factors. During the EMA studies, participants can receive prompted assessments intensively across days and within each day, which results in three-level longitudinal data, e.g., subject-level (level-3), day-level nested in subject (level-2) and assessment-level nested in each day (level-1). Those three-level data may exhibit complex longitudinal correlation structure but ignoring or mis-specifying the within-subject correlation structure can lead to bias on the estimation of the key effects and the intraclass correlation. Given the three-level EMA data and the time stamps of the responses, we proposed a linear mixed effects model with random effects at each level. In this model, we accounted for level-2 autocorrelation and level-1 autocorrelation and showed how structural information from the three-level data improved the fit of the model. With real time stamps of the assessments, we also provided a useful extension of this proposed model to deal with the issue of irregular-spacing in EMA assessments.
期刊介绍:
The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.