A Curriculum Learning Based Approach to Captioning Ultrasound Images.

Mohammad Alsharid, Rasheed El-Bouri, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble
{"title":"A Curriculum Learning Based Approach to Captioning Ultrasound Images.","authors":"Mohammad Alsharid, Rasheed El-Bouri, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-030-60334-2_8","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel curriculum learning approach to train a natural language processing (NLP) based fetal ultrasound image captioning model. Datasets containing medical images and corresponding textual descriptions are relatively rare and hence, smaller-sized when compared to the datasets of natural images and their captions. This fact inspired us to develop an approach to train a captioning model suitable for small-sized medical data. Our datasets are prepared using real-world ultrasound video along with synchronised and transcribed sonographer speech recordings. We propose a \"dual-curriculum\" method for the ultrasound image captioning problem. The method relies on building and learning from curricula of image and text information for the ultrasound image captioning problem. We compare several distance measures for creating the dual curriculum and observe the best performance using the Wasserstein distance for image information and tf-idf metric for text information. The evaluation results show an improvement in all performance metrics when using curriculum learning over stochastic mini-batch training for the individual task of image classification as well as using a dual curriculum for image captioning.</p>","PeriodicalId":93127,"journal":{"name":"Medical ultrasound, and preterm, perinatal and paediatric image analysis","volume":"12437 ","pages":"75-84"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116255/pdf/EMS96576.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasound, and preterm, perinatal and paediatric image analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-60334-2_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel curriculum learning approach to train a natural language processing (NLP) based fetal ultrasound image captioning model. Datasets containing medical images and corresponding textual descriptions are relatively rare and hence, smaller-sized when compared to the datasets of natural images and their captions. This fact inspired us to develop an approach to train a captioning model suitable for small-sized medical data. Our datasets are prepared using real-world ultrasound video along with synchronised and transcribed sonographer speech recordings. We propose a "dual-curriculum" method for the ultrasound image captioning problem. The method relies on building and learning from curricula of image and text information for the ultrasound image captioning problem. We compare several distance measures for creating the dual curriculum and observe the best performance using the Wasserstein distance for image information and tf-idf metric for text information. The evaluation results show an improvement in all performance metrics when using curriculum learning over stochastic mini-batch training for the individual task of image classification as well as using a dual curriculum for image captioning.

基于课程学习的超声图像字幕方法。
我们提出了一种新的课程学习方法来训练基于自然语言处理(NLP)的胎儿超声图像字幕模型。包含医学图像和相应文本描述的数据集相对较少,因此,与自然图像及其标题的数据集相比,数据集的尺寸更小。这一事实启发了我们开发一种方法来训练适合小型医疗数据的字幕模型。我们的数据集是使用真实世界的超声视频以及同步和转录的超声医师语音记录准备的。我们提出了一种“双课程”方法来解决超声图像的字幕问题。该方法依赖于图像和文本信息课程的构建和学习来解决超声图像字幕问题。我们比较了创建双课程的几种距离度量,并使用图像信息的Wasserstein距离和文本信息的tf-idf度量来观察最佳性能。评估结果表明,在图像分类的单个任务中使用课程学习优于随机小批量训练以及在图像字幕中使用双重课程时,所有性能指标都有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信