Contractibility of a persistence map preimage.

Jacek Cyranka, Konstantin Mischaikow, Charles Weibel
{"title":"Contractibility of a persistence map preimage.","authors":"Jacek Cyranka,&nbsp;Konstantin Mischaikow,&nbsp;Charles Weibel","doi":"10.1007/s41468-020-00059-7","DOIUrl":null,"url":null,"abstract":"<p><p>This work is motivated by the following question in data-driven study of dynamical systems: given a dynamical system that is observed via time series of persistence diagrams that encode topological features of snapshots of solutions, what conclusions can be drawn about solutions of the original dynamical system? We address this challenge in the context of an <i>N</i> dimensional system of ordinary differential equation defined in <math> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </math> . To each point in <math> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </math> (e.g. an initial condition) we associate a persistence diagram. The main result of this paper is that under this association the preimage of every persistence diagram is contractible. As an application we provide conditions under which multiple time series of persistence diagrams can be used to conclude the existence of a fixed point of the differential equation that generates the time series.</p>","PeriodicalId":73600,"journal":{"name":"Journal of applied and computational topology","volume":"4 4","pages":"509-523"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41468-020-00059-7","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied and computational topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41468-020-00059-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work is motivated by the following question in data-driven study of dynamical systems: given a dynamical system that is observed via time series of persistence diagrams that encode topological features of snapshots of solutions, what conclusions can be drawn about solutions of the original dynamical system? We address this challenge in the context of an N dimensional system of ordinary differential equation defined in R N . To each point in R N (e.g. an initial condition) we associate a persistence diagram. The main result of this paper is that under this association the preimage of every persistence diagram is contractible. As an application we provide conditions under which multiple time series of persistence diagrams can be used to conclude the existence of a fixed point of the differential equation that generates the time series.

Abstract Image

Abstract Image

Abstract Image

持久性映射原映像的可收缩性。
这项工作的动机是在数据驱动的动力系统研究中的以下问题:给定一个动力系统,通过编码解决方案快照的拓扑特征的持久性图的时间序列来观察,可以得出关于原始动力系统的解决方案的什么结论?我们在定义为rn的N维常微分方程系统的背景下解决了这一挑战。对于rn中的每个点(例如初始条件),我们关联一个持久性图。本文的主要结果是在这种关联下,每个持久化图的原象都是可压缩的。作为一个应用,我们提供了一些条件,在这些条件下,持久性图的多个时间序列可以用来得出生成时间序列的微分方程的不动点的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信