Gerd Wallukat, Burkhard Jandrig, Niels-Peter Becker, Johann J Wendler, Peter Göttel, Johannes Müller, Martin Schostak, Ingolf Schimke
{"title":"Autoantibodies directed against α1-adrenergic receptor and endothelin receptor A in patients with prostate cancer.","authors":"Gerd Wallukat, Burkhard Jandrig, Niels-Peter Becker, Johann J Wendler, Peter Göttel, Johannes Müller, Martin Schostak, Ingolf Schimke","doi":"10.1186/s13317-020-00136-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>For prostate cancer, signaling pathways induced by over-boarding stimulation of G-protein coupled receptors (GPCR) such as the endothelin, α1- and β-adrenergic, muscarinic and angiotensin 1 receptors were accused to support the carcinogenesis. However, excessive receptor stimulation by physiological receptor ligands is minimized by a control system that induces receptor sensitization and down-regulation. This system is missing when so-called \"functional autoantibodies\" bind to the GPCR (GPCR-AAB). If GPCR-AAB were found in patients with prostate cancer, uncontrolled GPCR stimulation could make these autoantibodies an additional supporter in prostate cancer.</p><p><strong>Methods: </strong>Using the bioassay of spontaneously beating cultured rat neonatal cardiomyocytes, GPCR-AAB were identified, quantified and characterized in the serum of 25 patients (aged 56-78 years, median 70 years) with prostate cancer compared to 10 male patients (aged 48-82 years, median 64) with urinary stone disorders (controls).</p><p><strong>Results: </strong>Of the cancer patients, 24 (96%) and 17 (68%), respectively, carried autoantibodies directed against the α1-adrenergic receptor (α1-AAB) and endothelin receptor A (ETA-AAB). No patient was negative for both GPCR-AAB. In contrast, ETA-AAB and α1-AAB were absent in all (100%) and 9 (90%) of the 10 control patients, respectively. While α1-AAB targeted a specific epitope of the first extracellular loop of the α1-adrenergic receptor subtype A, an epitope of the second extracellular loop of the ETA receptor was identified as a target of ETA-AAB. As demonstrated in vitro, the functional activity of both autoantibodies found in prostate cancer can be neutralized by the aptamer BC007.</p><p><strong>Conclusions: </strong>We hypothesized that α1-AAB and ETA-AAB, which are highly present in prostate cancer patients, could by their functional activity support carcinogenesis by excessive receptor stimulation. The in vitro demonstrated neutralization of α1- and ETA-AAB by the aptamer BC007 could open the door to complement the treatments already available for prostate cancer.</p>","PeriodicalId":8655,"journal":{"name":"Auto-Immunity Highlights","volume":" ","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13317-020-00136-y","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Auto-Immunity Highlights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13317-020-00136-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
Background: For prostate cancer, signaling pathways induced by over-boarding stimulation of G-protein coupled receptors (GPCR) such as the endothelin, α1- and β-adrenergic, muscarinic and angiotensin 1 receptors were accused to support the carcinogenesis. However, excessive receptor stimulation by physiological receptor ligands is minimized by a control system that induces receptor sensitization and down-regulation. This system is missing when so-called "functional autoantibodies" bind to the GPCR (GPCR-AAB). If GPCR-AAB were found in patients with prostate cancer, uncontrolled GPCR stimulation could make these autoantibodies an additional supporter in prostate cancer.
Methods: Using the bioassay of spontaneously beating cultured rat neonatal cardiomyocytes, GPCR-AAB were identified, quantified and characterized in the serum of 25 patients (aged 56-78 years, median 70 years) with prostate cancer compared to 10 male patients (aged 48-82 years, median 64) with urinary stone disorders (controls).
Results: Of the cancer patients, 24 (96%) and 17 (68%), respectively, carried autoantibodies directed against the α1-adrenergic receptor (α1-AAB) and endothelin receptor A (ETA-AAB). No patient was negative for both GPCR-AAB. In contrast, ETA-AAB and α1-AAB were absent in all (100%) and 9 (90%) of the 10 control patients, respectively. While α1-AAB targeted a specific epitope of the first extracellular loop of the α1-adrenergic receptor subtype A, an epitope of the second extracellular loop of the ETA receptor was identified as a target of ETA-AAB. As demonstrated in vitro, the functional activity of both autoantibodies found in prostate cancer can be neutralized by the aptamer BC007.
Conclusions: We hypothesized that α1-AAB and ETA-AAB, which are highly present in prostate cancer patients, could by their functional activity support carcinogenesis by excessive receptor stimulation. The in vitro demonstrated neutralization of α1- and ETA-AAB by the aptamer BC007 could open the door to complement the treatments already available for prostate cancer.