Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes.

Q3 Biochemistry, Genetics and Molecular Biology
Enzymes Pub Date : 2020-01-01 Epub Date: 2020-07-18 DOI:10.1016/bs.enz.2020.05.012
Helen S Toogood, Nigel S Scrutton
{"title":"Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes.","authors":"Helen S Toogood,&nbsp;Nigel S Scrutton","doi":"10.1016/bs.enz.2020.05.012","DOIUrl":null,"url":null,"abstract":"<p><p>Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"47 ","pages":"491-515"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.enz.2020.05.012","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzymes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.enz.2020.05.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.

涉及多用途催化烯还原酶的热、电化学和光化学反应。
利用黄蛋白的生物催化过程的成功开发需要实施具有成本效益的解决方案,以避免需要提供昂贵的烟酰胺辅酶作为还原等价物。利用黄蛋白烯还原酶的力量进行化学合成可能会增加可用精细化学品和药物的范围和/或光学纯度,因为它们具有催化不对称生物还原的能力。这篇综述将概述目前在设计替代途径的烯还原酶黄素活化,最值得注意的是在老黄酶家族。各种化学、酶、电化学和光催化途径已被采用,旨在消除对烟酰胺辅酶的需求,或为有效回收提供经济有效的替代方案。光化学方法也使烯还原酶的新机制途径成为可能,开辟了获取更广泛的非天然化学多样性的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzymes
Enzymes Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
4.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信