{"title":"<i>ZMAT2</i> in Humans and Other Primates: A Highly Conserved and Understudied Gene.","authors":"Kabita Baral, Peter Rotwein","doi":"10.1177/1176934320941500","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in genetics present unique opportunities for enhancing our understanding of human physiology and disease predisposition through detailed analysis of gene structure, expression, and population variation via examination of data in publicly accessible genome and gene expression repositories. Yet, the vast majority of human genes remain understudied. Here, we show the scope of these genomic and genetic resources by evaluating <i>ZMAT2</i>, a member of a 5-gene family that through May 2020 had been the focus of only 4 peer-reviewed scientific publications. Using analysis of information extracted from public databases, we show that human <i>ZMAT2</i> is a 6-exon gene and find that it exhibits minimal genetic variation in human populations and in disease states, including cancer. We further demonstrate that the gene and its encoded protein are highly conserved among nonhuman primates and define a cohort of <i>ZMAT2</i> pseudogenes in the marmoset genome. Collectively, our investigations illustrate how complementary use of genomic, gene expression, and population genetic resources can lead to new insights about human and mammalian biology and evolution, and when coupled with data supporting key roles for ZMAT2 in keratinocyte differentiation and pre-RNA splicing argue that this gene is worthy of further study.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320941500","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320941500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Recent advances in genetics present unique opportunities for enhancing our understanding of human physiology and disease predisposition through detailed analysis of gene structure, expression, and population variation via examination of data in publicly accessible genome and gene expression repositories. Yet, the vast majority of human genes remain understudied. Here, we show the scope of these genomic and genetic resources by evaluating ZMAT2, a member of a 5-gene family that through May 2020 had been the focus of only 4 peer-reviewed scientific publications. Using analysis of information extracted from public databases, we show that human ZMAT2 is a 6-exon gene and find that it exhibits minimal genetic variation in human populations and in disease states, including cancer. We further demonstrate that the gene and its encoded protein are highly conserved among nonhuman primates and define a cohort of ZMAT2 pseudogenes in the marmoset genome. Collectively, our investigations illustrate how complementary use of genomic, gene expression, and population genetic resources can lead to new insights about human and mammalian biology and evolution, and when coupled with data supporting key roles for ZMAT2 in keratinocyte differentiation and pre-RNA splicing argue that this gene is worthy of further study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.