{"title":"ELOVL2: Not just a biomarker of aging","authors":"Daniel L. Chao , Dorota Skowronska-Krawczyk","doi":"10.1016/j.tma.2020.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>DNA methylation of the ELOVL2 (Elongation Of Very Long Chain Fatty Acids-Like 2) promoter is one of the most robust molecular biomarkers for chronological age, but whether ELOVL2 plays a functional role in aging has not been explored. ELOVL2 encodes a transmembrane protein involved in the synthesis of very long polyunsaturated fatty acids (VLC-PUFAs). These fatty acids play important roles in retinal biology and photoreceptor renewal, key processes implicated in age-related eye diseases such as age-related macular degeneration (AMD). Here, we summarize our work deciphering the role of ELOVL2 in the eye emphasizing the potential functional role of age-related DNA methylation in the pathophysiology of AMD.</p></div>","PeriodicalId":36555,"journal":{"name":"Translational Medicine of Aging","volume":"4 ","pages":"Pages 78-80"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tma.2020.06.004","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Medicine of Aging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468501120300109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 13
Abstract
DNA methylation of the ELOVL2 (Elongation Of Very Long Chain Fatty Acids-Like 2) promoter is one of the most robust molecular biomarkers for chronological age, but whether ELOVL2 plays a functional role in aging has not been explored. ELOVL2 encodes a transmembrane protein involved in the synthesis of very long polyunsaturated fatty acids (VLC-PUFAs). These fatty acids play important roles in retinal biology and photoreceptor renewal, key processes implicated in age-related eye diseases such as age-related macular degeneration (AMD). Here, we summarize our work deciphering the role of ELOVL2 in the eye emphasizing the potential functional role of age-related DNA methylation in the pathophysiology of AMD.