The advent of precision epigenetics for medulloblastoma.

Oncoscience Pub Date : 2020-05-14 eCollection Date: 2020-07-01 DOI:10.18632/oncoscience.507
Chaoxi Li, Erwin G Van Meir
{"title":"The advent of precision epigenetics for medulloblastoma.","authors":"Chaoxi Li, Erwin G Van Meir","doi":"10.18632/oncoscience.507","DOIUrl":null,"url":null,"abstract":"Medulloblastoma (MB) is the most common and fatal malignant pediatric brain tumor, is located in the cerebellum and is associated with significant therapyrelated morbidity [1]. MB can be subdivided into four clinically and molecularly distinct groups: wingless (WNT), sonic hedgehog (SHH), and groups 3 and 4 [2]. The standard of care for MB patients irrespective of group consists of surgical resection, cranio-spinal radiation and combination chemotherapy. This intensive regimen improves survival, especially in WNT-MB patients. SHH and group 4 patients have intermediate benefit, while most group 3 patients relapse and die from the disease. Moreover, therapy-induced damage to the developing brain remains a significant problem: young survivors suffer from life-long cognitive, neurological and neuroendocrine side effects. Less toxic novel therapies are urgently needed to improve quality of life of these children and young adults. Genomic studies have identified frequent alterations in epigenetic regulators in MBs, suggesting that incorporating epigenetic reprogramming therapy into the standard of care for MB patients may be beneficial and potentially less toxic. Polycomb group proteins are transcriptional repressors essential for normal gene regulation during development and are perturbed in a wide range of human cancers. They usually belong to either of two protein complexes: Polycomb Repressive Complex 1 (PRC1) that adds a ubiquityl moiety to histone H2A at lysine 119 (H2AK119ubl) and PRC2 that catalyzes the addition of one to three methyl groups to histone H3 at lysine 27, leading to H3K27me1, H3K27me2 and H3K27me3 [3]. EZH2, the catalytic component of PRC2, writes the suppressive chromatin marker H3K27me3 and is Research Perspective","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458335/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Medulloblastoma (MB) is the most common and fatal malignant pediatric brain tumor, is located in the cerebellum and is associated with significant therapyrelated morbidity [1]. MB can be subdivided into four clinically and molecularly distinct groups: wingless (WNT), sonic hedgehog (SHH), and groups 3 and 4 [2]. The standard of care for MB patients irrespective of group consists of surgical resection, cranio-spinal radiation and combination chemotherapy. This intensive regimen improves survival, especially in WNT-MB patients. SHH and group 4 patients have intermediate benefit, while most group 3 patients relapse and die from the disease. Moreover, therapy-induced damage to the developing brain remains a significant problem: young survivors suffer from life-long cognitive, neurological and neuroendocrine side effects. Less toxic novel therapies are urgently needed to improve quality of life of these children and young adults. Genomic studies have identified frequent alterations in epigenetic regulators in MBs, suggesting that incorporating epigenetic reprogramming therapy into the standard of care for MB patients may be beneficial and potentially less toxic. Polycomb group proteins are transcriptional repressors essential for normal gene regulation during development and are perturbed in a wide range of human cancers. They usually belong to either of two protein complexes: Polycomb Repressive Complex 1 (PRC1) that adds a ubiquityl moiety to histone H2A at lysine 119 (H2AK119ubl) and PRC2 that catalyzes the addition of one to three methyl groups to histone H3 at lysine 27, leading to H3K27me1, H3K27me2 and H3K27me3 [3]. EZH2, the catalytic component of PRC2, writes the suppressive chromatin marker H3K27me3 and is Research Perspective

Abstract Image

成神经管细胞瘤精确表观遗传学的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信