{"title":"Dictionary Learning for Spontaneous Neural Activity Modeling.","authors":"Eirini Troullinou, Grigorios Tsagkatakis, Ganna Palagina, Maria Papadopouli, Stelios Manolis Smirnakis, Panagiotis Tsakalides","doi":"10.23919/EUSIPCO.2017.8081475","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling the activity of an ensemble of neurons can provide critical insights into the workings of the brain. In this work we examine if learning based signal modeling can contribute to a high quality modeling of neuronal signal data. To that end, we employ the sparse coding and dictionary learning schemes for capturing the behavior of neuronal responses into a small number of representative prototypical signals. Performance is measured by the reconstruction quality of clean and noisy test signals, which serves as an indicator of the generalization and discrimination capabilities of the learned dictionaries. To validate the merits of the proposed approach, a novel dataset of the actual recordings from 183 neurons from the primary visual cortex of a mouse in early postnatal development was developed and investigated. The results demonstrate that high quality modeling of testing data can be achieved from a small number of training examples and that the learned dictionaries exhibit significant specificity when introducing noise.</p>","PeriodicalId":87340,"journal":{"name":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","volume":"2017 ","pages":"1579-1583"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485749/pdf/nihms-1625649.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling the activity of an ensemble of neurons can provide critical insights into the workings of the brain. In this work we examine if learning based signal modeling can contribute to a high quality modeling of neuronal signal data. To that end, we employ the sparse coding and dictionary learning schemes for capturing the behavior of neuronal responses into a small number of representative prototypical signals. Performance is measured by the reconstruction quality of clean and noisy test signals, which serves as an indicator of the generalization and discrimination capabilities of the learned dictionaries. To validate the merits of the proposed approach, a novel dataset of the actual recordings from 183 neurons from the primary visual cortex of a mouse in early postnatal development was developed and investigated. The results demonstrate that high quality modeling of testing data can be achieved from a small number of training examples and that the learned dictionaries exhibit significant specificity when introducing noise.