Marie Karanian, Anna Kelsey, Sandrine Paindavoine, Adeline Duc, Helene Vanacker, Liz Hook, Nicolas Weinbreck, Christophe Delfour, Veronique Minard, Pauline Baillard, Jean-Yves Blay, Daniel Pissaloux, Franck Tirode
{"title":"SRF Fusions Other Than With RELA Expand the Molecular Definition of SRF-fused Perivascular Tumors.","authors":"Marie Karanian, Anna Kelsey, Sandrine Paindavoine, Adeline Duc, Helene Vanacker, Liz Hook, Nicolas Weinbreck, Christophe Delfour, Veronique Minard, Pauline Baillard, Jean-Yves Blay, Daniel Pissaloux, Franck Tirode","doi":"10.1097/PAS.0000000000001546","DOIUrl":null,"url":null,"abstract":"<p><p>Pericytic tumors encompass several entities sharing morphologic and immunohistochemical features. A subset of perivascular myoid tumors associated with the SRF-RELA fusion gene was previously described. Herein, we report a series of 13 tumors belonging to this group, in which we have identified new fusion genes by RNA-sequencing, thus expanding the molecular spectrum of this entity. All patients except 1 were children and infants. The tumors, frequently located in the head (n=8), had a mean size of 38 mm (range 10 to 150 mm) and were mostly (n=9) well-circumscribed. Exploration of the follow-up data (ranging from 3 to 68 mo) confirmed the benign behavior of these tumors. These neoplasms presented a spectrum of morphologies, ranging from perivascular patterns to myoid appearance. Tumor cells presented mitotic figures but without marked atypia. Some of these tumors could mimic sarcoma. The immunohistochemical profiles confirmed a pericytic differentiation with the expression of the smooth muscle actin and the h-caldesmon, as well as the frequent positivity for pan-cytokeratin. The molecular analysis identified the expected SRF-RELA fusion gene, in addition to other genetic alterations, all involving SRF fused to CITED1, CITED2, NFKBIE, or NCOA2. The detection of SRF-NCOA2 fusions in spindle cell rhabdomyosarcoma of the infant has previously been described, representing a risk of misdiagnosis, although the cases reported herein did not express MyoD1. Finally, clustering analyses confirmed that this group of SRF-fused perivascular myoid tumors forms a distinct entity, different from other perivascular tumors, spindle cell rhabdomyosarcomas of the infant, and smooth muscle tumors.</p>","PeriodicalId":275221,"journal":{"name":"The American Journal of Surgical Pathology","volume":" ","pages":"1725-1735"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Journal of Surgical Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAS.0000000000001546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Pericytic tumors encompass several entities sharing morphologic and immunohistochemical features. A subset of perivascular myoid tumors associated with the SRF-RELA fusion gene was previously described. Herein, we report a series of 13 tumors belonging to this group, in which we have identified new fusion genes by RNA-sequencing, thus expanding the molecular spectrum of this entity. All patients except 1 were children and infants. The tumors, frequently located in the head (n=8), had a mean size of 38 mm (range 10 to 150 mm) and were mostly (n=9) well-circumscribed. Exploration of the follow-up data (ranging from 3 to 68 mo) confirmed the benign behavior of these tumors. These neoplasms presented a spectrum of morphologies, ranging from perivascular patterns to myoid appearance. Tumor cells presented mitotic figures but without marked atypia. Some of these tumors could mimic sarcoma. The immunohistochemical profiles confirmed a pericytic differentiation with the expression of the smooth muscle actin and the h-caldesmon, as well as the frequent positivity for pan-cytokeratin. The molecular analysis identified the expected SRF-RELA fusion gene, in addition to other genetic alterations, all involving SRF fused to CITED1, CITED2, NFKBIE, or NCOA2. The detection of SRF-NCOA2 fusions in spindle cell rhabdomyosarcoma of the infant has previously been described, representing a risk of misdiagnosis, although the cases reported herein did not express MyoD1. Finally, clustering analyses confirmed that this group of SRF-fused perivascular myoid tumors forms a distinct entity, different from other perivascular tumors, spindle cell rhabdomyosarcomas of the infant, and smooth muscle tumors.