Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in Paenibacillus polymyxa.

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2017-12-21 eCollection Date: 2017-01-01 DOI:10.1093/synbio/ysx007
Marius Rütering, Brady F Cress, Martin Schilling, Broder Rühmann, Mattheos A G Koffas, Volker Sieber, Jochen Schmid
{"title":"Tailor-made exopolysaccharides-CRISPR-Cas9 mediated genome editing in <i>Paenibacillus polymyxa</i>.","authors":"Marius Rütering,&nbsp;Brady F Cress,&nbsp;Martin Schilling,&nbsp;Broder Rühmann,&nbsp;Mattheos A G Koffas,&nbsp;Volker Sieber,&nbsp;Jochen Schmid","doi":"10.1093/synbio/ysx007","DOIUrl":null,"url":null,"abstract":"<p><p>Application of state-of-the-art genome editing tools like CRISPR-Cas9 drastically increase the number of undomesticated micro-organisms amenable to highly efficient and rapid genetic engineering. Adaptation of these tools to new bacterial families can open up entirely new possibilities for these organisms to accelerate as biotechnologically relevant microbial factories, also making new products economically competitive. Here, we report the implementation of a CRISPR-Cas9 based vector system in <i>Paenibacillus polymyxa</i>, enabling fast and reliable genome editing in this host. Homology directed repair allows for highly efficient deletions of single genes and large regions as well as insertions. We used the system to investigate the yet undescribed biosynthesis machinery for exopolysaccharide (EPS) production in <i>P. polymyxa</i> DSM 365, enabling assignment of putative roles to several genes involved in EPS biosynthesis. Using this simple gene deletion strategy, we generated EPS variants that differ from the wild-type polymer not only in terms of monomer composition, but also in terms of their rheological behavior. The developed CRISPR-Cas9 mediated engineering approach will significantly contribute to the understanding and utilization of socially and economically relevant <i>Paenibacillus</i> species and extend the polymer portfolio.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":"2 1","pages":"ysx007"},"PeriodicalIF":2.6000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/synbio/ysx007","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysx007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 40

Abstract

Application of state-of-the-art genome editing tools like CRISPR-Cas9 drastically increase the number of undomesticated micro-organisms amenable to highly efficient and rapid genetic engineering. Adaptation of these tools to new bacterial families can open up entirely new possibilities for these organisms to accelerate as biotechnologically relevant microbial factories, also making new products economically competitive. Here, we report the implementation of a CRISPR-Cas9 based vector system in Paenibacillus polymyxa, enabling fast and reliable genome editing in this host. Homology directed repair allows for highly efficient deletions of single genes and large regions as well as insertions. We used the system to investigate the yet undescribed biosynthesis machinery for exopolysaccharide (EPS) production in P. polymyxa DSM 365, enabling assignment of putative roles to several genes involved in EPS biosynthesis. Using this simple gene deletion strategy, we generated EPS variants that differ from the wild-type polymer not only in terms of monomer composition, but also in terms of their rheological behavior. The developed CRISPR-Cas9 mediated engineering approach will significantly contribute to the understanding and utilization of socially and economically relevant Paenibacillus species and extend the polymer portfolio.

Abstract Image

Abstract Image

Abstract Image

定制外多糖- crispr - cas9介导的多粘类芽孢杆菌基因组编辑。
CRISPR-Cas9等最先进的基因组编辑工具的应用大大增加了适合高效快速基因工程的未驯化微生物的数量。将这些工具应用于新的细菌家族,可以为这些生物加速成为生物技术相关的微生物工厂开辟全新的可能性,也使新产品在经济上具有竞争力。在这里,我们报道了在多粘类芽孢杆菌中实现基于CRISPR-Cas9的载体系统,实现了对该宿主的快速可靠的基因组编辑。同源定向修复允许单基因和大区域的高效缺失以及插入。我们利用该系统研究了P. polymyxa DSM 365中尚未描述的胞外多糖(EPS)生产的生物合成机制,从而确定了参与EPS生物合成的几个基因的推测作用。利用这种简单的基因缺失策略,我们产生了不同于野生型聚合物的EPS变体,不仅在单体组成方面,而且在流变行为方面。开发的CRISPR-Cas9介导的工程方法将极大地促进对社会和经济相关的芽孢杆菌物种的理解和利用,并扩展聚合物组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信