Marginal quantile regression for longitudinal data analysis in the presence of time-dependent covariates.

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
I-Chen Chen, Philip M Westgate
{"title":"Marginal quantile regression for longitudinal data analysis in the presence of time-dependent covariates.","authors":"I-Chen Chen, Philip M Westgate","doi":"10.1515/ijb-2020-0010","DOIUrl":null,"url":null,"abstract":"<p><p>When observations are correlated, modeling the within-subject correlation structure using quantile regression for longitudinal data can be difficult unless a working independence structure is utilized. Although this approach ensures consistent estimators of the regression coefficients, it may result in less efficient regression parameter estimation when data are highly correlated. Therefore, several marginal quantile regression methods have been proposed to improve parameter estimation. In a longitudinal study some of the covariates may change their values over time, and the topic of time-dependent covariate has not been explored in the marginal quantile literature. As a result, we propose an approach for marginal quantile regression in the presence of time-dependent covariates, which includes a strategy to select a working type of time-dependency. In this manuscript, we demonstrate that our proposed method has the potential to improve power relative to the independence estimating equations approach due to the reduction of mean squared error.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 2","pages":"267-282"},"PeriodicalIF":1.2000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591406/pdf/nihms-1754217.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

When observations are correlated, modeling the within-subject correlation structure using quantile regression for longitudinal data can be difficult unless a working independence structure is utilized. Although this approach ensures consistent estimators of the regression coefficients, it may result in less efficient regression parameter estimation when data are highly correlated. Therefore, several marginal quantile regression methods have been proposed to improve parameter estimation. In a longitudinal study some of the covariates may change their values over time, and the topic of time-dependent covariate has not been explored in the marginal quantile literature. As a result, we propose an approach for marginal quantile regression in the presence of time-dependent covariates, which includes a strategy to select a working type of time-dependency. In this manuscript, we demonstrate that our proposed method has the potential to improve power relative to the independence estimating equations approach due to the reduction of mean squared error.

存在时变协变量的纵向数据分析的边际分位数回归。
当观测值相关时,除非使用工作独立结构,否则使用纵向数据的分位数回归来建模主题内相关结构可能很困难。虽然这种方法确保了回归系数的一致估计,但当数据高度相关时,它可能导致回归参数估计效率较低。因此,提出了几种边际分位数回归方法来改进参数估计。在纵向研究中,一些协变量可能会随着时间的推移而改变其值,而时间相关协变量的主题尚未在边际分位数文献中进行探讨。因此,我们提出了一种在存在时间相关协变量的情况下进行边际分位数回归的方法,其中包括选择时间相关工作类型的策略。在本文中,我们证明,由于均方误差的减少,我们提出的方法相对于独立估计方程方法具有提高功率的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信