Ectopic Expression of a Transmembrane Protein KaCyt b6 from a Red Seaweed Kappaphycus alvarezii in Transgenic Tobacco Augmented the Photosynthesis and Growth.
Sweta K Yadav, Kusum Khatri, Mangal S Rathore, Bhavanath Jha
{"title":"Ectopic Expression of a Transmembrane Protein KaCyt b<sub>6</sub> from a Red Seaweed <i>Kappaphycus alvarezii</i> in Transgenic Tobacco Augmented the Photosynthesis and Growth.","authors":"Sweta K Yadav, Kusum Khatri, Mangal S Rathore, Bhavanath Jha","doi":"10.1089/dna.2020.5479","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome b<sub>6</sub>f complex is a thylakoid membrane-localized protein and catalyses the transfer of electrons from plastoquinol to plastocyanin in photosynthetic electron transport chain. In the present study, <i>Cytochrome b<sub>6</sub></i> (<i>KaCyt b<sub>6</sub></i>) gene from <i>Kappaphycus alvarezii</i> (a red seaweed) was overexpressed in tobacco. A 935 base pair (bp) long <i>KaCyt b<sub>6</sub></i> cDNA contained an open reading frame of 648 bp encoding a protein of 215 amino acids with an expected isoelectric point of 8.67 and a molecular mass of 24.37 kDa. The <i>KaCyt b<sub>6</sub></i> gene was overexpressed in tobacco under control of CaMV35S promoter. The transgenic tobacco had higher electron transfer rate and photosynthetic yield over wild-type and vector control tobacco. The <i>KaCyt b<sub>6</sub></i> tobacco also exhibited significantly higher photosynthetic gas exchange (P<sub>N</sub>) and improved water use efficiency. The transgenic plants had higher ratio of P<sub>N</sub> and intercellular CO<sub>2</sub>. The <i>KaCyt b<sub>6</sub></i> transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry, and photochemical quenching. The basal quantum yield of nonphotochemical processes in PSII was recorded lower in <i>KaCyt b<sub>6</sub></i> tobacco. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll and also had better ratios of chlorophyll a and b, and carotenoids and total chlorophyll contents hence improved photosynthetic efficiency and production of sugar and starch. The <i>KaCyt b<sub>6</sub></i> transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge through literature survey, this is the first report on characterization of <i>KaCyt b<sub>6</sub></i> gene from <i>K. alvarezii</i> for enhanced photosynthetic efficiency and growth in tobacco.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":" ","pages":"e630-e644"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2020.5479","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome b6f complex is a thylakoid membrane-localized protein and catalyses the transfer of electrons from plastoquinol to plastocyanin in photosynthetic electron transport chain. In the present study, Cytochrome b6 (KaCyt b6) gene from Kappaphycus alvarezii (a red seaweed) was overexpressed in tobacco. A 935 base pair (bp) long KaCyt b6 cDNA contained an open reading frame of 648 bp encoding a protein of 215 amino acids with an expected isoelectric point of 8.67 and a molecular mass of 24.37 kDa. The KaCyt b6 gene was overexpressed in tobacco under control of CaMV35S promoter. The transgenic tobacco had higher electron transfer rate and photosynthetic yield over wild-type and vector control tobacco. The KaCyt b6 tobacco also exhibited significantly higher photosynthetic gas exchange (PN) and improved water use efficiency. The transgenic plants had higher ratio of PN and intercellular CO2. The KaCyt b6 transgenic tobacco showed higher estimates of photosystem II quantum yield, higher activity of the water-splitting complex, PSII photochemistry, and photochemical quenching. The basal quantum yield of nonphotochemical processes in PSII was recorded lower in KaCyt b6 tobacco. Transgenic tobacco contained higher contents of carotenoids and total chlorophyll and also had better ratios of chlorophyll a and b, and carotenoids and total chlorophyll contents hence improved photosynthetic efficiency and production of sugar and starch. The KaCyt b6 transgenic plants performed superior under control and greenhouse conditions. To the best of our knowledge through literature survey, this is the first report on characterization of KaCyt b6 gene from K. alvarezii for enhanced photosynthetic efficiency and growth in tobacco.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.