Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, Mark Tehranipoor
{"title":"Leveraging Side-channel Information for Disassembly and Security.","authors":"Jungmin Park, Fahim Rahman, Apostol Vassilev, Domenic Forte, Mark Tehranipoor","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart home appliances as well as traditional computing platforms such as personal computers and servers have been increasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded devices and difficulty in wide-coverage and on-time software updates, software-only cyber defense techniques, such as traditional anti-virus and malware detectors, do not offer a silver-bullet solution. Hardware-based security monitoring and protection techniques, therefore, have gained significant attention. Monitoring devices using side channel leakage information, e.g. power supply variation and electromagnetic (EM) radiation, is a promising avenue that promotes multiple directions in security and trust applications. In this paper, we provide a taxonomy of hardware-based monitoring techniques against different cyber and hardware attacks, highlight the potentials and unique challenges, and display how power-based side-channel instruction-level monitoring can offer suitable solutions to prevailing embedded device security issues. Further, we delineate approaches for future research directions.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450766/pdf/nihms-1588338.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of Internet of Things (IoT), devices such as smartphones, embedded medical devices, smart home appliances as well as traditional computing platforms such as personal computers and servers have been increasingly targeted with a variety of cyber attacks. Due to limited hardware resources for embedded devices and difficulty in wide-coverage and on-time software updates, software-only cyber defense techniques, such as traditional anti-virus and malware detectors, do not offer a silver-bullet solution. Hardware-based security monitoring and protection techniques, therefore, have gained significant attention. Monitoring devices using side channel leakage information, e.g. power supply variation and electromagnetic (EM) radiation, is a promising avenue that promotes multiple directions in security and trust applications. In this paper, we provide a taxonomy of hardware-based monitoring techniques against different cyber and hardware attacks, highlight the potentials and unique challenges, and display how power-based side-channel instruction-level monitoring can offer suitable solutions to prevailing embedded device security issues. Further, we delineate approaches for future research directions.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors