Lei Zhang, Charalampos Papachristou, Pankaj K Choudhary, Swati Biswas
{"title":"A Bayesian Hierarchical Framework for Pathway Analysis in Genome-Wide Association Studies.","authors":"Lei Zhang, Charalampos Papachristou, Pankaj K Choudhary, Swati Biswas","doi":"10.1159/000508664","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pathway analysis allows joint consideration of multiple SNPs belonging to multiple genes, which in turn belong to a biologically defined pathway. This type of analysis is usually more powerful than single-SNP analyses for detecting joint effects of variants in a pathway.</p><p><strong>Methods: </strong>We develop a Bayesian hierarchical model by fully modeling the 3-level hierarchy, namely, SNP-gene-pathway that is naturally inherent in the structure of the pathways, unlike the currently used ad hoc ways of combining such information. We model the effects at each level conditional on the effects of the levels preceding them within the generalized linear model framework. To deal with the high dimensionality, we regularize the regression coefficients through an appropriate choice of priors. The model is fit using a combination of iteratively weighted least squares and expectation-maximization algorithms to estimate the posterior modes and their standard errors. A normal approximation is used for inference.</p><p><strong>Results: </strong>We conduct simulations to study the proposed method and find that our method has higher power than some standard approaches in several settings for identifying pathways with multiple modest-sized variants. We illustrate the method by analyzing data from two genome-wide association studies on breast and renal cancers.</p><p><strong>Conclusion: </strong>Our method can be helpful in detecting pathway association.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":"84 6","pages":"240-255"},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000508664","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000508664","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Pathway analysis allows joint consideration of multiple SNPs belonging to multiple genes, which in turn belong to a biologically defined pathway. This type of analysis is usually more powerful than single-SNP analyses for detecting joint effects of variants in a pathway.
Methods: We develop a Bayesian hierarchical model by fully modeling the 3-level hierarchy, namely, SNP-gene-pathway that is naturally inherent in the structure of the pathways, unlike the currently used ad hoc ways of combining such information. We model the effects at each level conditional on the effects of the levels preceding them within the generalized linear model framework. To deal with the high dimensionality, we regularize the regression coefficients through an appropriate choice of priors. The model is fit using a combination of iteratively weighted least squares and expectation-maximization algorithms to estimate the posterior modes and their standard errors. A normal approximation is used for inference.
Results: We conduct simulations to study the proposed method and find that our method has higher power than some standard approaches in several settings for identifying pathways with multiple modest-sized variants. We illustrate the method by analyzing data from two genome-wide association studies on breast and renal cancers.
Conclusion: Our method can be helpful in detecting pathway association.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.