{"title":"Streamline pair selection for comparative flow field visualization.","authors":"Shoko Sawada, Takayuki Itoh, Takashi Misaka, Shigeru Obayashi, Tobias Czauderna, Kingsley Stephens","doi":"10.1186/s42492-020-00056-8","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid dynamics simulation is often repeated under varying conditions. This leads to a generation of large amounts of results, which are difficult to compare. To compare results under different conditions, it is effective to overlap the streamlines generated from each condition in a single three-dimensional space. Streamline is a curved line, which represents a wind flow. This paper presents a technique to automatically select and visualize important streamlines that are suitable for the comparison of the simulation results. Additionally, we present an implementation to observe the flow fields in virtual reality spaces.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"3 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-020-00056-8","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-020-00056-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1
Abstract
Fluid dynamics simulation is often repeated under varying conditions. This leads to a generation of large amounts of results, which are difficult to compare. To compare results under different conditions, it is effective to overlap the streamlines generated from each condition in a single three-dimensional space. Streamline is a curved line, which represents a wind flow. This paper presents a technique to automatically select and visualize important streamlines that are suitable for the comparison of the simulation results. Additionally, we present an implementation to observe the flow fields in virtual reality spaces.