Integral representation of generalized grey Brownian motion.

Wolfgang Bock, Sascha Desmettre, José Luís da Silva
{"title":"Integral representation of generalized grey Brownian motion.","authors":"Wolfgang Bock, Sascha Desmettre, José Luís da Silva","doi":"10.1080/17442508.2019.1641093","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the representation of a class of non-Gaussian processes, namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process which is a solution of a certain stochastic differential equation. In particular, the underlying process can be seen as a non-Gaussian extension of the Ornstein-Uhlenbeck process, hence generalizing the representation results of Muravlev, Russian Math. Surveys 66 (2), 2011 as well as Harms and Stefanovits, Stochastic Process. Appl. 129, 2019 to the non-Gaussian case.</p>","PeriodicalId":93054,"journal":{"name":"Stochastics (Abingdon, England : 2005)","volume":"92 4","pages":"552-565"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics (Abingdon, England : 2005)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2019.1641093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the representation of a class of non-Gaussian processes, namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process which is a solution of a certain stochastic differential equation. In particular, the underlying process can be seen as a non-Gaussian extension of the Ornstein-Uhlenbeck process, hence generalizing the representation results of Muravlev, Russian Math. Surveys 66 (2), 2011 as well as Harms and Stefanovits, Stochastic Process. Appl. 129, 2019 to the non-Gaussian case.

Abstract Image

Abstract Image

Abstract Image

广义灰色布朗运动的积分表示。
在本文中,我们研究了一类非高斯过程(即广义灰色布朗运动)的表示方法,即随机过程的加权积分,它是某个随机微分方程的解。特别是,基础过程可以看作是奥恩斯坦-乌伦贝克过程的非高斯扩展,从而推广了穆拉夫列夫的表示结果,《俄罗斯数学》,第 66 (2) 卷,第 2 期,第 2 页。Surveys 66 (2), 2011 以及 Harms 和 Stefanovits, Stochastic Process.应用》,2019 年第 129 期,适用于非高斯情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信